Möhle, M. Convergence results for compound Poisson distributions and applications to the standard Luria-Delbrück distribution. (English) Zbl 1086.60014 J. Appl. Probab. 42, No. 3, 620-631 (2005). If the random variables \((X_j,j\geq 1)\) are independent and identically distributed and \(N_m\sim\text{Po}(m)\) is independent of them, then the random variable \(Y_m:= \sum^{N_m}_{j=1} X_j\) has a compound Poisson distribution. If the characteristic function \(\varphi\) of \(X_1\) is such that \(\varphi'(t)+ ia\log|t|\sim- ia-c\text{\,sgn\,}t\) as \(t\to 0\), then it is shown, by considering characteristic function asymptotics, that \(m^{-1}Y_m- a\log m\) converges in distribution as \(m\to\infty\) to a stable distribution explicitly determined by \(a\) and \(c\). The Luria-Delbrück family of distributions provides such an example; see also A. G. Pakes [J. Appl. Probab. 30, No. 4, 991–994 (1993; Zbl 0801.60005)]. Reviewer: Andrew D. Barbour (Zürich) Cited in 8 Documents MSC: 60F05 Central limit and other weak theorems 92D15 Problems related to evolution 60E10 Characteristic functions; other transforms 92D10 Genetics and epigenetics Citations:Zbl 0801.60005 PDFBibTeX XMLCite \textit{M. Möhle}, J. Appl. Probab. 42, No. 3, 620--631 (2005; Zbl 1086.60014) Full Text: DOI References: [1] Angerer, W. P. (2001). An explicit representation of the Luria–Delbrück distribution. J. Math. Biol. 42 , 145–174. · Zbl 1009.92028 · doi:10.1007/s002850000053 [2] Angerer, W. P. (2001). A note on the evaluation of fluctuation experiments. Mutation Res. 479 , 207–224. [3] Bartlett, M. S. (1978). An Introduction to Stochastic Processes , 3rd edn. Cambridge University Press. · Zbl 0365.60002 [4] Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987). Regular Variation . Cambridge University Press. · Zbl 0617.26001 [5] Gradshteyn, I. S. and Ryzhik, I. M. (2000). Tables of Integrals, Series, and Products , 6th edn. Academic Press, San Diego, CA. · Zbl 0981.65001 [6] Kemp, A. W. (1994). Comments on the Luria–Delbrück distribution. J. Appl. Prob. 31 , 822–828. · Zbl 0811.60011 · doi:10.2307/3215159 [7] Kepler, T. B. and Oprea, M. (2001). Improved inference of mutation rates. I. An integral representation for the Luria–Delbrück distribution. Theoret. Pop. Biol. 59 , 41–48. · Zbl 1011.92039 · doi:10.1006/tpbi.2000.1496 [8] Kepler, T. B. and Oprea, M. (2001). Improved inference of mutation rates. II. Generalization of the Luria–Delbrück distribution. Theoret. Pop. Biol . 59 , 49–59. · Zbl 1013.92030 · doi:10.1006/tpbi.2000.1504 [9] Lea, D. E. and Coulson, C. A. (1949). The distribution of the number of mutants in bacterial populations. J. Genet. 49 , 264–285. [10] Lukacs, E. (1970). Characteristic Functions , 2nd edn. Griffin, London. · Zbl 0201.20404 [11] Luria, S. E. and Delbrück, M. (1943). Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28 , 491–511. [12] Ma, W. T., Sandri, G. vH. and Sarkar, S. (1992). Analysis of the Luria–Delbrück distribution using discrete convolution powers. J. Appl. Prob. 29 , 255–267. · Zbl 0753.60021 · doi:10.2307/3214564 [13] Pakes, A. G. (1993). Remarks on the Luria–Delbrück distribution. J. Appl. Prob. 30 , 991–994. · Zbl 0801.60005 · doi:10.2307/3214530 [14] Prodinger, H. (1996). Asymptotics of the Luria–Delbrück distribution via singularity analysis. J. Appl. Prob. 33 , 282–283. · Zbl 0851.60013 · doi:10.2307/3215284 [15] Zolotarev, V. M. (1986). One-Dimensional Stable Distributions . American Mathematical Society, Providence, RI. · Zbl 0589.60015 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.