zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Symplectic conditions for exponential fitting Runge-Kutta-Nyström methods. (English) Zbl 1086.65120
Summary: Symplecticity conditions easy to handle for constructing symplectic Runge-Kutta-Nyström methods fitted to trigonometric functions are given. These conditions generalize that of {\it Yu. B. Suris} [Zh. Vychisl. Mat. Mat. Fiz. 29, No. 2, 202--211 (1989; Zbl 0686.65039)] when the frequencies tends to zero.

65P10Numerical methods for Hamiltonian systems including symplectic integrators
37M15Symplectic integrators (dynamical systems)
65L06Multistep, Runge-Kutta, and extrapolation methods
34A26Geometric methods in differential equations
34A34Nonlinear ODE and systems, general
65L05Initial value problems for ODE (numerical methods)
Full Text: DOI
[1] Suris, Y. B.: On the canonicity of mappings that can be generated by methods of Runge-Kutta type for integrating systems :$x = -\partialu/\partialx $(in russian). U.S.S.R. comput. Math. and math. Phys. 29, No. 1, 138-144 (1990)
[2] Hairer, E.; Lubich, C.; Wanner, G.: Geometric numerical integration. Structure-preserving algorithms for ordinary differential equations. (2002) · Zbl 0994.65135
[3] Arnold, V. I.: Mathematical methods of classical mechanics. (1989)
[4] Sanz-Serna, J. M.: Symplectic integrators for Hamiltonian problems: an overview. Acta numerica 1, 243-286 (1992) · Zbl 0762.65043
[5] Sanz-Serna, J. M.; Calvo, M. P.: Numerical Hamiltonian problems. (1994) · Zbl 0816.65042
[6] Hairer, E.; Nørsett, S. P.; Wanner, G.: Solving ordinary differential equations I. Nonstiff problems. (1987) · Zbl 0638.65058
[7] Calvo, M. P.; Sanz-Serna, J. M.: High-order symplectic Runge-Kutta-Nyström methods. SIAM J. Sci. comput. 14, 1237-1252 (1993) · Zbl 0787.65056
[8] Calvo, M. P.; Sanz-Serna, J. M.: The development of variable-step symplectic integrators with application to the two-body problem. SIAM J. Sci. comput. 14, 936-952 (1993) · Zbl 0785.65083
[9] Vigo-Aguiar, J.; Ferrándiz, J. M.: A general procedure por the adaptation of multistep algorithms to the integration of oscillatory problems. Sinum 35, No. 4, 1684-1708 (1998) · Zbl 0916.65081
[10] Vigo-Aguiar, J.; Simos, T. E.: An exponentially fitted and trigonometrically fitted method for the numerical solution of orbital problems. The astronomical journal 122, No. 3, 1656-1660 (2001)
[11] Berghe, G. Vanden; De Meyer, H.; Van Daele, M.; Van Hecke, T.: Exponentially fitted Runge-Kutta methods. Journal of computational and applied mathematics 125, No. 1--2, 107-115 (2000) · Zbl 0999.65065
[12] Simos, T. E.: An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions. Computer physics communications 115, No. 1, 1 (1998) · Zbl 1001.65080
[13] Simos, T. E.; Vigo-Aguiar, J.: J. exponentially fitted symplectic integrator. Phys. rev. E 67, No. 1, 016701-016707 (2003)
[14] Vigo-Aguiar, J.; Simos, T. E.; Tocino, A.: An adapted symplectic integrator for Hamiltonian problems. J. modern phys. C 12, No. 2, 225-234 (2001)