×

Applying fuzzy measures and nonlinear integrals in data mining. (English) Zbl 1086.68613

Summary: The paper gives an overview of applying fuzzy measures and relevant nonlinear integrals in data mining, discussed in five application areas: set function identification, nonlinear multiregression, nonlinear classification, networks, and fuzzy data analysis. In these areas, fuzzy measures allow us to describe interactions among feature attributes towards a certain target (objective attribute), while nonlinear integrals serve as aggregation tools to combine information from feature attributes. Values of fuzzy measures in these applications are unknown and are optimally determined via a soft computing technique based on given data.

MSC:

68T37 Reasoning under uncertainty in the context of artificial intelligence
28E10 Fuzzy measure theory
68T05 Learning and adaptive systems in artificial intelligence
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Chen, T.; Wang, J.; Tzeng, G., Identification of general fuzzy measure by genetic algorithm based on partial information, IEEE Trans. SMC Part B, 30, 4, 517-528 (2000)
[2] Choquet, G., Theory of capacities, Annales de l’Institut Fourier, 5, 131-295 (1954) · Zbl 0064.35101
[5] Denneberg, D., Non-Additive Measure and Integral (1994), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht, Boston, London · Zbl 0826.28002
[6] Devore, J. L., Probability and Statistics for Engineering and the Sciences (1995), Duxbury Press: Duxbury Press Belmont, California
[7] Grabisch, M., A new algorithm for identifying fuzzy measures and its application to pattern recognition, (Proc. Joint Conference of 4th IEEE International Conference on Fuzzy Systems and 2nd International Fuzzy Engineering Symposium. Proc. Joint Conference of 4th IEEE International Conference on Fuzzy Systems and 2nd International Fuzzy Engineering Symposium, Yokohama, Japan (March 1995)), 145-150
[8] Grabisch, M., The representation of importance and interaction of features by fuzzy measures, Pattern Recogn. Lett., 17, 567-575 (1996)
[9] Grabisch, M.; Nicolas, J. M., Classification by fuzzy integral: performance and tests, Fuzzy Set Syst., 65, 255-271 (1994)
[10] Grabisch, M.; Sugeno, M., Multi-attribute classification using fuzzy integral, (Proc. 1st FUZZ’IEEE Congress. Proc. 1st FUZZ’IEEE Congress, San Diego (1992)), 47-52
[11] Halmos, P. R., Measure Theory (1967), Van Nostrand: Van Nostrand New York · Zbl 0176.27602
[13] Keller, J. M.; Osborn, J., Training the fuzzy integral, Int. J. Approx. Reason., 15, 1-24 (1996) · Zbl 0949.68565
[14] Keller, J. M.; Qiu, H.; Tahani, H., Fuzzy integral and image segmentation, (Proc. NAFIPS’86. Proc. NAFIPS’86, New Orleans (1986)), 324-338
[16] Leung, K. S.; Wong, M. L.; Lam, W.; Wang, Z.; Xu, K., Learning nonlinear multiregression networks based on evolutionary computation, IEEE Trans. SMC Part B, 32, 5, 630-644 (2002)
[19] Murofushi, T.; Sugeno, M.; Machida, M., Nonmonotonic fuzzy measures and the Choquet integral, Fuzzy Set Syst., 64, 73-86 (1994) · Zbl 0844.28015
[20] Pap, E., Null-Additive Set Functions (1995), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht, Boston, London · Zbl 0856.28001
[23] Walley, P., Statistical Reasoning with Imprecise Probabilities (1991), Chapman and Hall: Chapman and Hall London · Zbl 0732.62004
[24] Wang, Z., Pan integral and Choquet integral, (Proc. of IFSA’93. Proc. of IFSA’93, Soeul (1993)), 316-317
[27] Wang, Z.; Guo, H.; Shi, Y.; Leung, K. S., A brief description of hybrid nonlinear classifiers based on generalized Choquet integrals, Lect. Notes in Artif. Int., 3327, 34-40 (2004)
[28] Wang, Z.; Klir, G. J., Fuzzy Measure Theory (1992), Plenum: Plenum New York · Zbl 0812.28010
[29] Wang, Z.; Klir, G. J., PFB-integrals and PFA-integrals with respect to monotone set functions, Int. J. Uncertain. Fuzz., 5, 2, 163-175 (1997) · Zbl 1232.28024
[30] Wang, Z.; Klir, G. J., Choquet integrals and natural extensions of lower probabilities, Int. J. Approx. Reason., 16, 137-147 (1997) · Zbl 0935.28010
[31] Wang, Z.; Klir, G. J.; Swan-Stone, J.; Xu, K., An algorithm for calculating natural extensions with respect to lower probabilities, (Grabisch, M.; Murofushi, T.; Sugeno, M., Fuzzy Measures and Integrals—Theory and Applications (2000), Springer: Springer Heidelberg), 467-476 · Zbl 0965.60002
[32] Wang, Z.; Klir, G. J.; Wang, J., Neural networks used for determining belief measures and plausibility measures, Intell. Autom. Soft Co., 4, 4, 313-324 (1998)
[33] Wang, Z.; Leung, K. S.; Wang, J., Genetic algorithms used for determining belief measures and plausibility measures, (Proc. NAFIPS’97. Proc. NAFIPS’97, Syracuse (1997)), 195-198
[34] Wang, Z.; Leung, K. S.; Wang, J., A genetic algorithm for determining nonadditive set functions in information fusion, Fuzzy Set Syst., 102, 463-469 (1999), (invited paper) · Zbl 0935.28014
[35] Wang, Z.; Leung, K. S.; Wang, J., Determining nonnegative monotone set functions based on Sugeno’s integral: an application of genetic algorithms, Fuzzy Set Syst., 112, 155-164 (2000)
[36] Wang, Z.; Leung, K. S.; Wong, M. L.; Fang, J., A new type of nonlinear integrals and the computational algorithm, Fuzzy Set. Syst., 112, 223-231 (2000) · Zbl 1040.28500
[37] Wang, Z.; Leung, K. S.; Wong, M. L.; Fang, J.; Xu, K., Nonlinear nonnegative multi-regressions based on Choquet integrals, Int. J. Approx. Reason., 25, 71-87 (2000) · Zbl 0968.68154
[38] Wang, Z.; Li, F., Applications of fuzzy measures in synthetic evaluation, Fuzzy Math., 1, 109-114 (1985), (in Chinese)
[39] Wang, Z.; Wang, J., Determining fuzzy measures by Choquet integral, (Proc. of ISUMA-NAFIPS’95 (1995), IEEE Computer Society Press), 274-277
[40] Wang, Z.; Wang, J., Neural networks used for optimization on determining belief measures and plausibility measures from data (extended abstract), (Methodologies for the Conception, Design, and Application of Intelligent Systems, Proc. of the 4th International Conference on Soft Computing. Methodologies for the Conception, Design, and Application of Intelligent Systems, Proc. of the 4th International Conference on Soft Computing, Iizuka, Japan (1996)), 593-595
[42] Wang, J.; Wang, Z., Using neural networks to determine Sugeno measures by statistics, Neural Networks, 10, 1, 183-195 (1997)
[43] Wang, W.; Wang, Z.; Klir, G. J., Genetic algorithms for determining fuzzy measures from data, J. Intell. Fuzzy Syst., 6, 2, 171-183 (1998)
[44] Wang, Z.; Xu, K.; Wang, J.; Klir, G. J., Using genetic algorithms to determine nonnegative monotone set functions for information fusion in environments with random perturbation, Int. J. Intell. Syst., 14, 949-962 (1999) · Zbl 0937.68100
[47] Xu, K.; Wang, Z.; Heng, P. A.; Leung, K. S., Classification by nonlinear integral projections, IEEE T. Fuzzy Syst., 11, 2, 187-201 (2003)
[48] Xu, K.; Wang, Z.; Ke, Y., A fast algorithm for Choquet-integral-based nonlinear multiregression used in data mining, Internat. J. Fuzzy Math., 8, 1, 195-201 (2000) · Zbl 1040.68566
[50] Xu, K.; Wang, Z.; Wong, M. L.; Leung, K. S., Discover dependency pattern among attributes by using a new type of nonlinear multiregression, Int. J. Intell. Syst., 16, 949-962 (2001) · Zbl 1064.68039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.