×

An introduction to differential geometry with applications to elasticity. (English) Zbl 1086.74001

This article has also been published as monograph [see Dordrecht: Springer (2005; Zbl 1100.53004)].

MSC:

53A05 Surfaces in Euclidean and related spaces
53-01 Introductory exposition (textbooks, tutorial papers, etc.) pertaining to differential geometry
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
74-01 Introductory exposition (textbooks, tutorial papers, etc.) pertaining to mechanics of deformable solids
74B05 Classical linear elasticity
74B20 Nonlinear elasticity

Citations:

Zbl 1100.53004
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adams, R.A. (1975): Sobolev Spaces, Academic Press, New York. · Zbl 0314.46030
[2] Agmon, S., Douglis, A., Nirenberg, L. (1964): Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II, Comm. Pure Appl. Math. 17, 35–92. · Zbl 0123.28706
[3] Akian, J.L. (2003): A simple proof of the ellipticity of Koiter’s model, Analysis and Applications 1, 1–16. · Zbl 1140.74480
[4] Alexandrescu, O. (1994): Théorème d’existence pour le modèle bidimensionnel de coque non linéaire de W.T. Koiter, C.R. Acad. Sci. Paris, Sér. I, 319, 899–902. · Zbl 0809.73040
[5] Amrouche, C., Girault, V. (1994): Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czech. Math. J. 44, 109–140. · Zbl 0823.35140
[6] Anicic, S., Le Dret, H., Raoult, A. (2005): The infinitesimal rigid displacement lemma in Lipschitz coordinates and application to shells with minimal regularity, Math. Methods Appl. Sci. 27, 1283–1299. · Zbl 1156.35477
[7] Antman, S.S. (1976): Ordinary differential equations of non-linear elasticity I: Foundations of the theories of non-linearly elastic rods and shells, Arch. Rational Mech. Anal. 61, 307–351. · Zbl 0354.73046
[8] Antman, S.S. (1995): Nonlinear Problems of Elasticity, Springer-Verlag, Berlin (Second Edition: 2004). · Zbl 0820.73002
[9] Ball, J.M. (1977): Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63, 337–403. · Zbl 0368.73040
[10] Bamberger, Y. (1981): Mécanique de l’Ingénieur, Volume II, Hermann, Paris.
[11] Berger, M. (2003): A Panoramic View of Riemannian Geometry, Springer, Berlin. · Zbl 1038.53002
[12] Berger M., Gostiaux, B. (1987): Géomémtrie Différentielle: Variétés, Courbes et Surfaces, Presses Universitaires de France, Paris.
[13] Bernadou, M. (1994): Méthodes d’Eléments Finis pour les Coques Minces, Masson, Paris (English translation: Finite Element Methods for Thin Shell Problems, John Wiley, New York, 1995).
[14] Bernadou, M., Ciarlet, P.G. (1976): Sur l’ellipticité du modèle linéaire de coques de W.T. Koiter, in Computing Methods in Applied Sciences and Engineering (R. Glowinski and J.L. Lions, Editors), pp. 89–136, Lecture Notes in Economics and Mathematical Systems, 134, Springer-Verlag, Heidelberg. · Zbl 0356.73066
[15] Bernadou, M., Ciarlet, P.G., Miara, B. (1994): Existence theorems for twodimensional linear shell theories, J. Elasticity 34, 111–138. · Zbl 0808.73045
[16] Blouza, A., Le Dret, H. (1999): Existence and uniqueness for the linear Koiter model for shells with little regularity, Quart. Appl. Math. 57, 317–337. · Zbl 1025.74020
[17] Bolley, P., Camus, J. (1976): Régularité pour une classe de problèmes aux limites elliptiques dégénérés variationnels, C.R. Acad. Sci. Paris, Sér. A, 282, 45–47. · Zbl 0314.35011
[18] Bonnet, O. (1848): Mémoire sur la théorie générale des surfaces, Journal de l’Ecole Polytechnique 19, 1–146.
[19] Boothby, W.M. (1975): An Introduction to Differentiable Manifolds and Riemannian Geometry, Academic Press, New York. · Zbl 0333.53001
[20] Borchers, W., Sohr, H. (1990): On the equations rot v = g and div u = f with zero boundary conditions, Hokkaido Math. J. 19, 67–87. · Zbl 0719.35014
[21] Brezis, H. (1983): Analyse Fonctionnelle, Théorie et Applications, Masson, Paris.
[22] Caillerie, D., Sanchez-Palencia, E. (1995): Elastic thin shells: asymptotic theory in the anisotropic and heterogeneous cases, Math. Models Methods Appl. Sci. 5, 473–496. · Zbl 0844.73043
[23] Cartan, E. (1927): Sur la possibilité de plonger un espace riemannien donné dans un espace euclidien, Annales de la Société Polonaise de Mathématiques 6, 1–7.
[24] do Carmo, M.P. (1976): Differential Geometry of Curves and Surfaces, Prentice-Hall, Englewood Cliffs. · Zbl 0326.53001
[25] do Carmo, M.P. (1994): Differential Forms and Applications, Universitext, Springer-Verlag, Berlin (English translation of: Formas Diferenciais e Apli\c{}cões, Instituto da Matematica, Pura e Aplicada, Rio de Janeiro, 1971).
[26] Chen, W., Jost, J. (2002): A Riemannian version of Korn’s inequality, Calculus of Variations 14, 517–530. · Zbl 1006.74011
[27] Choquet-Bruhat, de Witt-Morette and Dillard-Bleick (1977): Analysis, Manifolds and Physics, North-Holland, Amsterdam (Revised Edition: 1982). · Zbl 0385.58001
[28] Ciarlet, P.G. (1982): Introduction àl’Analyse Numérique Matricielle et àl’Optimisation, Masson, Paris (English translation: Introduction to Numerical Linear Algebra and Optimisation, Cambridge University Press, Cambridge, 1989).
[29] Ciarlet, P.G. (1988): Mathematical Elasticity, Volume I: Three-Dimensional Elasticity, North-Holland, Amsterdam. · Zbl 0648.73014
[30] Ciarlet, P.G. (1993): Modèles bi-dimensionnels de coques: Analyse asymptotique et théorèmes d’existence, in Boundary Value Problems for Partial Differential Equations and Applications (J.L. Lions and C. Baiocchi, Editors), pp. 61–80, Masson, Paris. · Zbl 0840.73038
[31] Ciarlet, P.G. (1997): Mathematical Elasticity, Volume II: Theory of Plates, North-Holland, Amsterdam. · Zbl 0888.73001
[32] Ciarlet, P.G. (2000a): Mathematical Elasticity, Volume III: Theory of Shells, North-Holland, Amsterdam. · Zbl 0953.74004
[33] Ciarlet, P.G. (2000b): Un modèle bi-dimensionnel non linéaire de coque analogue àcelui de W.T. Koiter, C.R. Acad. Sci. Paris, Sér. I, 331, 405–410. · Zbl 0994.74044
[34] Ciarlet, P.G. (2003): The continuity of a surface as a function of its two fundamental forms, J. Math. Pures Appl. 82, 253–274. · Zbl 1042.53003
[35] Ciarlet, P.G., Destuynder, P. (1979): A justification of the two-dimensional plate model, J. Mécanique 18, 315–344. · Zbl 0415.73072
[36] Ciarlet, P.G., Larsonneur, F. (2001): On the recovery of a surface with prescribed first and second fundamental forms, J. Math. Pures Appl. 81, 167–185. · Zbl 1044.53004
[37] Ciarlet, P.G., Laurent, F. (2003): Continuity of a deformation as a function of its Cauchy-Green tensor, Arch. Rational Mech. Anal. 167, 255–269. · Zbl 1030.74003
[38] Ciarlet, P.G., Lods, V. (1996a): On the ellipticity of linear membrane shell equations, J. Math. Pures Appl. 75, 107–124. · Zbl 0870.73037
[39] Ciarlet, P.G., Lods, V. (1996b): Asymptotic analysis of linearly elastic shells. I. Justification of membrane shell equations, Arch. Rational Mech. Anal. 136, 119–161. · Zbl 0887.73038
[40] Ciarlet, P.G., Lods, V. (1996c): Asymptotic analysis of linearly elastic shells. III. Justification of Koiter’s shell equations, Arch. Rational Mech. Anal. 136, 191–200. · Zbl 0887.73040
[41] Ciarlet, P.G., Lods, V. (1996d): Asymptotic analysis of linearly elastic shells: ”Generalized membrane shells”, J. Elasticity 43, 147–188. · Zbl 0891.73044
[42] Ciarlet, P.G., Lods, V., Miara, B. (1996): Asymptotic analysis of linearly elastic shells. II. Justification of flexural shell equations, Arch. Rational Mech. Anal. 136, 163–190. · Zbl 0887.73039
[43] Ciarlet, P.G., Mardare, C. (2003): On rigid and infinitesimal rigid displacements in three-dimensional elasticity, Math. Models Methods Appl. Sci. 13, 1589–1598. · Zbl 1055.74006
[44] Ciarlet, P.G., Mardare, C. (2004a): On rigid and infinitesimal rigid displacements in shell theory, J. Math. Pures Appl. 83, 1–15. · Zbl 1050.74030
[45] Ciarlet, P.G., Mardare, C. (2004b): Recovery of a manifold with boundary and its continuity as a function of its metric tensor, J. Math. Pures Appl. 83, 811–843. · Zbl 1088.74014
[46] Ciarlet, P.G., Mardare, C. (2004c): Continuity of a deformation in H1 as a function of its Cauchy-Green tensor in L1, J. Nonlinear Sci. 14, 415–427. · Zbl 1084.53063
[47] Ciarlet, P.G., Mardare, C. (2005): Recovery of a surface with boundary and its continuity as a function of its two fundamental forms, Analysis and Applications, 3, 99–117. · Zbl 1083.53007
[48] Ciarlet, P.G., Mardare, S. (2001): On Korn’s inequalities in curvilinear coordinates, Math. Models Methods Appl. Sci. 11, 1379–1391. · Zbl 1036.74036
[49] Ciarlet, P.G., Miara, B. (1992): Justification of the two-dimensional equations of a linearly elastic shallow shell, Comm. Pure Appl. Math. 45, 327–360. · Zbl 0769.73050
[50] Ciarlet, P.G., Neèas, J. (1987): Injectivity and self-contact in nonlinear elasticity, Arch. Rational Mech. Anal. 19, 171–188. · Zbl 0628.73043
[51] Ciarlet, P.G., Roquefort, A. (2001): Justification of a two-dimensional nonlinear shell model of Koiter’s type, Chinese Ann. Math. 22B, 129–244. · Zbl 0980.35159
[52] Ciarlet, P.G., Sanchez-Palencia, E. (1996): An existence and uniqueness theorem for the two-dimensional linear membrane shell equations, J. Math. Pures Appl. 75, 51–67. · Zbl 0856.73038
[53] Dacorogna (1989): Direct Methods in the Calculus of Variations, Springer, Berlin. · Zbl 0703.49001
[54] Dautray, R., Lions, J.L. (1984): Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques, Tome 1, Masson, Paris.
[55] Destuynder, P. (1980): Sur une Justification des Modèles de Plaques et de Coques par les Méthodes Asymptotiques, Doctoral Dissertation, Université Pierre et Marie Curie, Paris.
[56] Destuynder, P. (1985): A classification of thin shell theories, Acta Applicandae Mathematicae 4, 15–63. · Zbl 0561.73062
[57] Duvaut, G., Lions, J.L. (1972): Les Inéquations en Mécanique et en Physique, Dunod, Paris (English translation: Inequalities in Mechanics and Physics, Springer-Verlag, Berlin, 1976). · Zbl 0298.73001
[58] Flanders, H. (1989): Differential Forms with Applications to the Physical Sciences, Dover, New York. · Zbl 0733.53002
[59] Friesecke, G., James, R.D., Mora, M.G., Müller, S. (2003): Derivation of nonlinear bending theory for shells from three dimensional nonlinear elasticity by Gamma-convergence, C.R. Acad. Sci. Paris, Sér. I, 336, 697–702. · Zbl 1140.74481
[60] Friesecke, G., James, R.D., Müller, S. (2002): A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity, Comm. Pure Appl. Math. 55, 1461–1506. · Zbl 1021.74024
[61] Gallot, S., Hulin, D., Lafontaine, J. (2004): Riemannian Geometry, Third Edition, Springer, Berlin.
[62] Gauss, C.F. (1828): Disquisitiones generales circas superficies curvas, Commentationes societatis regiae scientiarum Gottingensis recentiores 6, Göttingen.
[63] Germain, P. (1972): Mécanique des Milieux Continus, Tome I, Masson, Paris. · Zbl 0242.73005
[64] Geymonat, G. (1965): Sui problemi ai limiti per i sistemi lineari ellittici, Ann. Mat. Pura Appl. 69, 207–284. · Zbl 0152.11102
[65] Geymonat, G., Gilardi, G. (1998): Contre-exemples à l’inégalité de Korn et au lemme de Lions dans des domaines irréguliers, in Equations aux Dérivées Partielles et Applications. Articles Dédiés à Jacques-Louis Lions, pp. 541–548, Gauthier-Villars, Paris. · Zbl 0915.35018
[66] Geymonat, G., Suquet, P. (1986): Functional spaces for Norton-Hoff materials, Math. Methods Appl. Sci. 8, 206–222. · Zbl 0616.73010
[67] Goldenveizer, A.L. (1963): Derivation of an approximate theory of shells by means of asymptotic integration of the equations of the theory of elasticity, Prikl. Mat. Mech. 27, 593–608.
[68] Gurtin, M.E. (1981): Topics in Finite Elasticity, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia. · Zbl 0496.73036
[69] Hartman, P., Wintner, A. (1950): On the embedding problem in differential geometry, Am. J. Math. 72, 553–564. · Zbl 0038.33403
[70] Jacobowitz, H. (1982): The Gauss-Codazzi equations, Tensor, N.S. 39, 15–22. · Zbl 0516.53054
[71] Janet, M. (1926): Sur la possibilité de plonger un espace riemannien donné dans un espace euclidien, Annales de la Société Polonaise de Mathématiques 5, 38–43.
[72] John, F. (1961): Rotation and strain, Comm. Pure Appl. Math. 14, 391–413. · Zbl 0102.17404
[73] John, F. (1965): Estimates for the derivatives of the stresses in a thin shell and interior shell equations, Comm. Pure Appl. Math. 18, 235–267.
[74] John, F. (1971): Refined interior equations for thin elastic shells, Comm. Pure Appl. Math. 18, 235–267. · Zbl 0299.73037
[75] John, F. (1972): Bounds for deformations in terms of average strains, in Inequalities III (O. Shisha, Editor), pp. 129–144, Academic Press, New York. · Zbl 0292.53003
[76] Klingenberg, W. (1973): Eine Vorlesung über Differentialgeometrie, Springer-Verlag, Berlin (English translation: A Course in Differential Geometry, Springer-Verlag, Berlin, 1978). · Zbl 0267.53001
[77] Kohn, R.V. (1982): New integral estimates for deformations in terms of their nonlinear strains, Arch. Rational Mech. Anal. 78, 131–172. · Zbl 0491.73023
[78] Koiter, W.T. (1966): On the nonlinear theory of thin elastic shells, Proc. Kon. Ned. Akad. Wetensch. B69, 1–54.
[79] Koiter, W.T. (1970): On the foundations of the linear theory of thin elastic shells, Proc. Kon. Ned. Akad. Wetensch. B73, 169–195. · Zbl 0213.27002
[80] Kühnel, W. (2002): Differentialgeometrie, Fried. Vieweg and Sohn, Wiesbaden (English translation: Differential Geometry: Curves-Surfaces-Manifolds, American Mathematical Society, Providence, 2002).
[81] Lebedev, L.P., Cloud, M.J. (2003): Tensor Analysis, World Scientific, Singapore.
[82] Le Dret, H. (2004): Well-posedness for Koiter and Naghdi shells with a G1-midsurface, Analysis and Applications 2, 365–388. · Zbl 1079.74043
[83] Le Dret, H., Raoult, A. (1996): The membrane shell model in nonlinear elasticity: A variational asymptotic derivation, J. Nonlinear Sci. 6, 59–84. · Zbl 0844.73045
[84] Lions, J.L. (1961): Equations Différentielles Opérationnelles et Problèmes aux Limites, Springer-Verlag, Berlin. · Zbl 0098.31101
[85] Lions, J.L. (1969): Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris.
[86] Lions, J.L. (1973): Perturbations Singulières dans les Problèmes aux Limites et en Contrôle Optimal, Lecture Notes in Mathematics, Vol. 323, Springer-Verlag, Berlin. · Zbl 0268.49001
[87] Lions, J.L., Magenes, E. (1968): Problèmes aux Limites Non Homogènes et Applications, Vol. 1, Dunod, Paris (English translation: Non-Homogeneous Boundary Value Problems and Applications, Vol. 1, Springer-Verlag, Berlin, 1972). · Zbl 0165.10801
[88] Lods, V. and Miara, B. (1998): Nonlinearly elastic shell models. II. The flexural model, Arch. Rational Mech. Anal. 142, 355–374. · Zbl 0906.73042
[89] Magenes, E., Stampacchia, G. (1958): I problemi al contorno per le equazioni differenziali di tipo ellittico, Ann. Scuola Norm. Sup. Pisa 12, 247–358. · Zbl 0082.09601
[90] Mardare, C. (2003): On the recovery of a manifold with prescribed metric tensor, Analysis and Applications 1, 433–453. · Zbl 1060.53005
[91] Mardare, S. (2003a): Inequality of Korn’s type on compact surfaces without boundary, Chinese Annals Math. 24B, 191–204 · Zbl 1091.53003
[92] Mardare, S. (2003b): The fundamental theorem of surface theory for surfaces with little regularity, J. Elasticity 73, 251–290. · Zbl 1076.53003
[93] Mardare, S. (2004): On isometric immersions of a Riemannian space with little regularity, Analysis and Applications 2, 193–226. · Zbl 1087.53031
[94] Mardare, S. (2005): On Pfaff systems with Lp coefficients and their applications in differential geometry, J. Math. Pures Appl., to appear. · Zbl 1087.35072
[95] Marsden, J.E., Hughes, T.J.R. (1983): Mathematical Foundations of Elasticity, Prentice-Hall, Englewood Cliffs (Second Edition: 1999). · Zbl 0545.73031
[96] Miara, B. (1998): Nonlinearly elastic shell models. I. The membrane model, Arch. Rational Mech. Anal. 142, 331–353. · Zbl 0906.73041
[97] Miara, B., Sanchez-Palencia, E. (1996): Asymptotic analysis of linearly elastic shells, Asymptotic Anal. 12, 41–54. · Zbl 0846.73038
[98] Morrey, Jr., C.B. (1952): Quasi-convexity and the lower semicontinuity of multiple integrals, Pacific J. Math. 2, 25–53. · Zbl 0046.10803
[99] Naghdi, P.M. (1972): The theory of shells and plates, in Handbuch der Physik, Vol. VIa/2 (S. Flügge and C. Truesdell, Editors), pp. 425–640, Springer-Verlag, Berlin.
[100] Nash, J. (1954): C1 isometric imbeddings, Annals of Mathematics, 60, 383–396. · Zbl 0058.37703
[101] Neèas, J. (1967): Les Méthodes Directes en Théorie des Equations Elliptiques, Masson, Paris.
[102] Nirenberg, L. (1974): Topics in Nonlinear Functional Analysis, Lecture Notes, Courant Institute, New York University (Second Edition: American Mathematical Society, Providence, 1994). · Zbl 0286.47037
[103] Reshetnyak, Y.G. (1967): Liouville’s theory on conformal mappings under minimal regularity assumptions, Sibirskii Math. J. 8, 69–85. · Zbl 0172.37801
[104] Reshetnyak, Y.G. (2003): Mappings of domains in Rn and their metric tensors, Siberian Math. J. 44, 332–345.
[105] Sanchez-Palencia, E. (1989a): Statique et dynamique des coques minces. I. Cas de flexion pure non inhibée, C.R. Acad. Sci. Paris, Sér. I, 309, 411–417. · Zbl 0697.73051
[106] Sanchez-Palencia, E. (1989b): Statique et dynamique des coques minces. II. Cas de flexion pure inhibée - Approximation membranaire, C.R. Acad. Sci. Paris, Sér. I, 309, 531–537. · Zbl 0712.73056
[107] Sanchez-Palencia, E. (1990): Passages à la limite de l’élasticité tri-dimensionnelle à la théorie asymptotique des coques minces, C.R. Acad. Sci. Paris, Sér. II, 311, 909–916. · Zbl 0701.73080
[108] Sanchez-Palencia, E. (1992): Asymptotic and spectral properties of a class of singular-stiff problems, J. Math. Pures Appl. 71, 379–406. · Zbl 0833.47011
[109] Sanchez-Hubert, J., Sanchez-Palencia, E. (1997): Coques Elastiques Minces: Propriétés Asymptotiques, Masson, Paris. · Zbl 0881.73001
[110] Schwartz, L. (1966): Théorie des Distributions, Hermann, Paris.
[111] Schwartz, L. (1992): Analyse II: Calcul Différentiel et Equations Différentielles, Hermann, Paris.
[112] Simmonds, J.G. (1994): A Brief on Tensor Analysis, Second Edition, Springer-Verlag, Berlin. · Zbl 0790.53014
[113] Slicaru, S. (1998): Quelques Résultats dans la Théorie des Coques Linéairement Elastiques à Surface Moyenne Uniformément Elliptique ou Compacte Sans Bord, Doctoral Dissertation, Université Pierre et Marie Curie, Paris.
[114] Spivak, M. (1999): A Comprehensive Introduction to Differential Geometry, Volumes I to V, Third Edition, Publish or Perish, Berkeley.
[115] Stein, E. (1970): Singular Integrals and Differentiability Properties of Functions, Princeton University Press. · Zbl 0207.13501
[116] Stoker, J.J. (1969): Differential Geometry, John Wiley, New York.
[117] Szczarba, R.H. (1970): On isometric immersions of Riemannian manifolds in Euclidean space, Boletim da Sociedade Brasileira de Matemática 1, 31–45. · Zbl 0361.53051
[118] Szopos, M. (2005): On the recovery and continuity of a submanifold with boundary, Analysis and Applications 3, 119–143. · Zbl 1151.53346
[119] Tartar, L. (1978): Topics in Nonlinear Analysis, Publications Mathématiques d’Orsay No. 78.13, Université de Paris-Sud, Orsay.
[120] Tenenblat, K. (1971): On isometric immersions of Riemannian manifolds, Boletim da Sociedade Brasileira de Matemática 2, 23–36. · Zbl 0338.53010
[121] Truesdell, C., Noll, W. (1965): The non-linear field theories of mechanics, in Handbuch der Physik, Vol. III/3 (S. Flügge, Editor), pp. 1–602, Springer-Verlag, Berlin. · Zbl 1068.74002
[122] Valent, T. (1988): Boundary Value Problems of Finite Elasticity, Springer Tracts in Natural Philosophy, Vol. 31, Springer-Verlag, Berlin. · Zbl 0648.73019
[123] Wang, C.C., Truesdell, C. (1973): Introduction to Rational Elasticity, Noordhoff, Groningen.
[124] Whitney, H. (1934): Analytic extensions of differentiable functions defined in closed sets, Trans. Am. Math. Soc. 36, 63–89. · Zbl 0008.24902
[125] Yosida, K. (1966): Functional Analysis, Springer-Verlag, Berlin. · Zbl 0152.32102
[126] Zeidler, E. (1986): Nonlinear Functional Analysis and its Applications, Vol. I: Fixed-Point Theorems, Springer-Verlag, Berlin. · Zbl 0583.47050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.