zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Mathematical analysis of the global dynamics of a model for HIV infection of CD4$^{+}$ T cells. (English) Zbl 1086.92035
Summary: A mathematical model that describes HIV infection of CD4$^{+}$ T cells is analyzed. Global dynamics of the model is rigorously established. We prove that, if the basic reproduction number $R_{0}\le 1$, the HIV infection is cleared from the T-cell population; if $R_{0} > 1$, the HIV infection persists. For an open set of parameter values, the chronic-infection equilibrium $P^*$ can be unstable and periodic solutions may exist. We establish parameter regions for which $P^*$ is globally stable.

92C60Medical epidemiology
34D05Asymptotic stability of ODE
34D23Global stability of ODE
37N25Dynamical systems in biology
Full Text: DOI
[1] Perelson, A. S.; Kirschner, D. E.; De Boer, R.: Dynamics of HIV infection of CD4+ T cells. Math. biosci. 114, 81 (1993) · Zbl 0796.92016
[2] Perelson, A. S.; Nelson, P. W.: Mathematical analysis of HIV-I dynamics in vivo. SIAM rev. 41, 3 (1999) · Zbl 1078.92502
[3] Nelson, P. W.; Perelson, A. S.: Mathematical analysis of delay differential equation models of HIV-1 infection. Math. biosci. 179, 73 (2002) · Zbl 0992.92035
[4] Perelson, A. S.: Modeling the interaction of the immune system with HIV. Lecture notes in biomathematics 83, 350 (1989) · Zbl 0683.92001
[5] Kirschner, D.: Using mathematics to understand HIV immune dynamics. Notices AMS 43, 191 (1996) · Zbl 1044.92503
[6] De Leenheer, P.; Smith, H. L.: Virus dynamics: a global analysis. SIAM J. Appl. math. 63, 1313 (2003) · Zbl 1035.34045
[7] Li, M. Y.; Muldowney, J. S.: A geometric approach to the global-stability problems. SIAM J. Math. anal. 27, 1070 (1996) · Zbl 0873.34041
[8] Li, M. Y.; Smith, H. L.; Wang, L.: Global dynamics of an SEIR model with vertical transmission. SIAM J. Appl. math. 62, 58 (2001) · Zbl 0991.92029
[9] Wang, L.; Li, M. Y.; Kirschner, D.: Mathematical analysis of the global dynamics of a model for HTLV-I infection and ATL progression. Math. biosci. 179, 207 (2002) · Zbl 1008.92026
[10] Lasalle, J. P.: The stability of dynamical systems, regional conference series in applied mathematics. (1976) · Zbl 0364.93002
[11] Freedman, H. I.; Tang, M. X.; Ruan, S. G.: Uniform persistence and flows near a closed positively invariant set. J. dynam. Differen. equat. 6, 583 (1994) · Zbl 0811.34033
[12] Li, M. Y.; Graef, J. R.; Wang, L.; Karsai, J.: Global dynamics of a SEIR model with a varying total population size. Math. biosci. 160, 191 (1999) · Zbl 0974.92029
[13] Ruan, S.; Wei, J.: On the zeros of a third degree exponential polynomial with applications to a delayed model for the control of testosterone secretion. IMA J. Math. appl. Med. bio. 18, 41 (2001) · Zbl 0982.92008
[14] Fiedler, M.: Additive compound matrices and inequality for eigenvalues of stochastic matrices. Czech math. J. 99, 392 (1974) · Zbl 0345.15013
[15] Muldowney, J. S.: Compound matrices and ordinary differential equations. Rocky mount. J. math. 20, 857 (1990) · Zbl 0725.34049
[16] Coppel, W. A.: Stability and asymptotic behavior of differential equations. (1995) · Zbl 0838.52014
[17] Butler, G. J.; Waltman, P.: Persistence in dynamical systems. Proc. am. Math. soc. 96, 425 (1986) · Zbl 0603.58033
[18] Waltman, P.: A brief survey of persistence. Delay differential equations and dynamical systems, 31 (1991) · Zbl 0756.34054
[19] Jr., R. H. Martin: Logarithmic norms and projections applied to linear differential systems. J. math. Anal. appl. 45, 432 (1974) · Zbl 0293.34018