×

Diophantine approximations and toric deformations. (English) Zbl 1087.11047

Some time ago the reviewer and G. Wüstholz applied the (then new) product theorem in Diophantine approximation to subvarieties of projective spaces, and obtained a new proof of Schmidt’s theorem (on linear forms). The exponents in these result where governed by invariants of filtered vector-spaces.
The paper under review gives a systematic treatment of these invariants for subvarieties of projective spaces, mainly in terms of their Chow-forms. At the end the author gives many examples of the results which can be achieved by this method.

MSC:

11J25 Diophantine inequalities
11J95 Results involving abelian varieties
14G40 Arithmetic varieties and schemes; Arakelov theory; heights
14M25 Toric varieties, Newton polyhedra, Okounkov bodies
PDF BibTeX XML Cite
Full Text: DOI Euclid

References:

[1] A. Beauville, “A Calabi-Yau threefold with non-abelian fundamental group” in New Trends in Algebraic Geometry (Warwick, England, 1996) , London Math. Soc. Lecture Note Ser. 264 , Cambridge Univ. Press, Cambridge, 1999, 13–17. · Zbl 0955.14029
[2] L. J. Billera, P. Filliman, and B. Sturmfels, Constructions and complexity of secondary polytopes, Adv. Math. 83 (1990), 155–179. · Zbl 0714.52004
[3] J. P. Dalbec, Geometry and combinatorics of Chow forms , Ph.D. dissertation, Cornell University, Ithaca, N.Y., 1995. · Zbl 0980.15508
[4] D. Eisenbud, Commutative Algebra: With a View toward Algebraic Geometry , Grad. Texts in Math. 150 , Springer, New York, 1995. · Zbl 0819.13001
[5] J.-H. Evertse, An improvement of the quantitative subspace theorem , Compositio Math. 101 (1996), 225–311. · Zbl 0856.11030
[6] J.-H. Evertse and R. G. Ferretti, Diophantine inequalitites on projective varieties , Internat. Math. Res. Notices 2002 , no. 25, 1295–1330. \CMP1 903 776 · Zbl 1073.14521
[7] G. Faltings, Diophantine approximation on abelian varieties , Ann. of Math. (2) 133 (1991), 549–576. JSTOR: · Zbl 0734.14007
[8] G. Faltings and G. Wüstholz, Diophantine approximations on projective spaces , Invent. Math. 116 (1994), 109–138. · Zbl 0805.14011
[9] R. G. Ferretti, Mumford’s degree of contact and Diophantine approximations , Compositio Math. 121 (2000), 247–262. · Zbl 0989.11034
[10] ——–, Quantitative Diophantine approximations on projective varieties , to appear in J. Reine Angew. Math., preprint, 1999,
[11] W. Fulton, Intersection Theory , Ergeb. Math. Grenzgeb. (3) 2 , Springer, Berlin, 1984. · Zbl 0541.14005
[12] F. Gaeta, Sul calcolo effettivo della forma associata \(F(W_ \alpha+\beta-n^gl)\) all’intersezione di due cicli effettivi puri \(U_\alpha^g,\) \(V_\beta^l\) di \(S_n\) in funzione delle \(F(U_\alpha^g),\) \(F(V_\beta^l)\) relative ai cicli secanti, I , Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 24 (1958), 269–276. · Zbl 0083.16104
[13] D. Gieseker, Global moduli for surfaces of general type , Invent. Math. 43 (1977), 233–282. · Zbl 0389.14006
[14] B. Grünbaum, Convex Polytopes , Pure Appl. Math. 16 , Interscience, Wiley, New York, 1967. · Zbl 0163.16603
[15] R. Hartshorne, Algebraic Geometry , Grad. Texts in Math. 52 , Springer, New York, 1977. · Zbl 0367.14001
[16] W. V. D. Hodge and D. Pedoe, Methods of Algebraic Geometry, Vol. II , Cambridge Univ. Press, Cambridge, 1952. · Zbl 0048.14502
[17] S. Ishii, Chow instability of certain projective varieties , Nagoya Math. J. 92 (1983), 39–50. · Zbl 0504.14004
[18] M. M. Kapranov, B. Sturmfels, and A. V. Zelevinsky, Chow polytopes and general resultants , Duke Math. J. 67 (1992), 189–218. · Zbl 0780.14027
[19] I. Morrison, Projective stability of ruled surfaces , Invent. Math. 56 (1980), 269–304. · Zbl 0423.14005
[20] ——–, Stability of Hilbert points of generic \(K3\) surfaces , Centre de Recerca Matemàtica, Barcelona, preprint number 401, 1999.
[21] D. Mumford, Stability of projective varieties , Enseign. Math. (2) 23 (1977), 39–110. · Zbl 0363.14003
[22] D. Mumford, J. Fogarty, and F. Kirwan, Geometric Invariant Theory , 3d ed., Ergeb. Math. Grenzgeb. (2) 34 , Springer, Berlin, 1994. · Zbl 0797.14004
[23] T. Oda, Convex Bodies and Algebraic Geometry: An Introduction to the Theory of Toric Varieties , Ergeb. Math. Grenzgeb. (3) 15 , Springer, Berlin, 1988. · Zbl 0628.52002
[24] P. Philippon, Sur des hauteurs alternatives, I , Math. Ann. 289 (1991), 255–283. · Zbl 0726.14017
[25] B. Saint-Donat, Projective models of \(K-3\) surfaces , Amer. J. Math. 96 (1974), 602–639. JSTOR: · Zbl 0301.14011
[26] B. Sturmfels, “Sparse elimination theory” in Computational Algebraic Geometry and Commutative Algebra (Cortona, Italy, 1991) , ed. D. Eisenbud and L. Robbiano, Sympos. Math. 34 , Cambridge Univ. Press, Cambridge, 1993, 264–298. · Zbl 0837.13011
[27] ——–, Gröbner Bases and Convex Polytopes , Univ. Lecture Ser. 8 , Amer. Math. Soc., Providence, 1996. · Zbl 0856.13020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.