×

Intrinsic capacities on compact Kähler manifolds. (English) Zbl 1087.32020

The authors develop a global pluripotential theory in the context of compact Kähler manifolds. From the maximum principle it follows that there are no plurisubharmonic (psh) functions on compact complex manifolds. If \(\omega\) is a real closed smooth form of bidegree \((1,1)\) on the complex manifold \(X\), one can obtain positive closed currents \(\omega^\prime\) of bidegree \((1,1)\) which are cohomologous to \(\omega\). If \(X\) is Kähler we can write \(\omega^\prime =\omega +dd^c\varphi\), where \(\varphi\) is a \(\omega\)-plurisubharmonic (\(\omega\) -psh)function (or a quasiplurisubharmonic (qpsh) function). The authors define \(\omega\)-psh functions and gather useful facts about them, define the complex Monge-Ampère operator, establish Chern-Levine-Nirenberg inequalities, and study the Monge-Ampère capacity. Next they study the Alexander capacity and show that locally pluripolar sets can be defined by \(\omega\) psh functions when \(\omega\) is Kähler.

MSC:

32U15 General pluripotential theory
32U05 Plurisubharmonic functions and generalizations
32Q15 Kähler manifolds
31C10 Pluriharmonic and plurisubharmonic functions
37F10 Dynamics of complex polynomials, rational maps, entire and meromorphic functions; Fatou and Julia sets
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] Alexander, H., Projective capacity. Recent developments in several complex variables, (Proc. Conf., Princeton Univ., 1979), Ann. of Math. Stud., 3-27 (1981), Princeton, N.J.: Princeton University Press, Princeton, N.J. · Zbl 0494.32001
[2] Alexander, H.; Taylor, B. A., Comparison of two capacities inC^n, Math. Z., 186, 3, 407-417 (1984) · Zbl 0576.32029 · doi:10.1007/BF01174894
[3] Bedford, E., Survey of pluri-potential theory. Several complex variables, (Stockholm, 1987/1988), Math. Notes, 48-97 (1993), Princeton, NJ: Princeton University Press, Princeton, NJ · Zbl 0786.31001
[4] Bedford, E.; Taylor, B. A., The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math., 37, 1, 1-44 (1976) · Zbl 0315.31007 · doi:10.1007/BF01418826
[5] Bedford, E.; Taylor, B. A., A new capacity for plurisubharmonic functions, Acta Math., 149, 1-2, 1-40 (1982) · Zbl 0547.32012 · doi:10.1007/BF02392348
[6] Cegrell, U., An estimate of the complex Monge-Ampère operator,Analytic Functions, Bazejewko, 1982, (Baze-jewko, 1982), Lecture Notes in Math., 84-87 (1983), Berlin: Springer, Berlin · Zbl 0529.35018
[7] Cegrell, U., Capacities in complex analysis, Aspects of Mathematics, E14. Friedr (1988), Braunschweig: Vieweg and Sohn, Braunschweig · Zbl 0655.32001
[8] Chern, S. S.; Levine, H. I.; Nirenberg, L., Intrinsic norms on a complex manifold, Global Analysis, (Papers in Honor of K. Kodaira), 119-139 (1969), Tokyo: Univ. Tokyo Press, Tokyo · Zbl 0202.11603
[9] Chinburg, T.; Lau, C. F.; Rumely, R., Capacity theory and arithmetic intersection theory, Duke Math. J., 117, 2, 229-285 (2003) · Zbl 1026.11056 · doi:10.1215/S0012-7094-03-11722-6
[10] Demailly, J.-P., EstimationsL^2 pour l’opérateur \(\bar \partial\) d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète, Ann. Sci. E.N.S. (4), 15, 3, 457-511 (1982) · Zbl 0507.32021
[11] Demailly, J.-P., Mesures de Monge-Ampère et caractérisation géométrique des variétés algébriques affines, Mém. Soc. Math. France (N.S.), 19, 124-124 (1985) · Zbl 0579.32012
[12] Demailly, J.-P., Regularization of closed positive currents and intersection theory, J. Algebraic Geom., 1, 3, 361-409 (1992) · Zbl 0777.32016
[13] Demailly, J.-P., MéthodesL^2 et résultats effectifs en géométrie algébrique, Séminaire Bourbaki, 1998/99, Astérisque, 266, 59-90 (2000) · Zbl 0962.14014
[14] Demailly, J.-P., On the Ohsawa-Takegoshi-Manivel L^2 extension theorem,Complex Analysis and Geometry, (Paris, 1997), Progr. Math., 47-82 (2000), Basel: Birkhäuser, Basel · Zbl 0959.32019
[15] Demailly, J.-P. Complex analytic and differential geometry, free accessible book (http://www-fourier.ujf-grenoble.fr/ demailly/books.html).
[16] Demailly, J.-P.; Peternell, T.; Schneider, M., Pseudo-effective line bundles on compact Kähler manifolds, Internat. J. Math., 12, 6, 689-741 (2001) · Zbl 1111.32302 · doi:10.1142/S0129167X01000861
[17] Dinh, T.-C.; Sibony, N., Dynamique des applications d’allure polynomiale, J. Math. Pures Appl. (9), 82, 4, 367-423 (2003) · Zbl 1033.37023
[18] Dinh, T.-C. and Sibony, N. Value distribution of meromorphic transforms and applications, preprint (2003).
[19] El, H., Fonctions plurisousharmoniques et ensembles polaires, Séminaire Pierre Lelong-Henri Skoda (Analyse). Années 1978/79, Lecture Notes in Math., 61-76 (1980), Berlin: Springer, Berlin · Zbl 0445.32015
[20] Favre, C.; Jonsson, M., Brolin’s theorem for curves in two complex dimensions, Ann. Inst. Fourier (Grenoble), 53, 5, 1461-1501 (2003) · Zbl 1113.32005
[21] Guedj, V., Approximation of currents on complex manifolds, Math. Ann., 313, 3, 437-474 (1999) · Zbl 0924.32014 · doi:10.1007/s002080050269
[22] Guedj, V., Equidistribution towards the Green Current, Bulletin S.M.F., 131, 359-372 (2003) · Zbl 1070.37026
[23] Guedj, V., Ergodic properties of rational mappings with large topological degree, Anal. Math., 161, 3, 1589-1607 (2005) · Zbl 1088.37020 · doi:10.4007/annals.2005.161.1589
[24] Guedj, V. and Zeriahi, A. Monge-Ampère operators on compact Kähler surfaces, preprint arXiv/math.CV/0504234. · Zbl 1137.32015
[25] Huckleberry, A., Subvarieties of homogeneous and almost homogeneous manifolds, contributions to complex analysis and analytic geometry, Aspects Math., 189-232 (1994), Braunschweig: Vieweg, Braunschweig · Zbl 0823.32016
[26] Kiselman, C., Plurisubharmonic functions and potential theory in several complex variables, development of mathematics, 1950/2000, 655-714 (2000), Basel: Birkhäuser, Basel · Zbl 0962.31001
[27] Klimek, M., Pluripotential Theory, London Mathematical Society Monographs (1991), New York: Oxford University Press, New York · Zbl 0742.31001
[28] Kolodziej, S., The complex Monge-Ampère equation, Acta Math., 180, 1, 69-117 (1998) · Zbl 0913.35043 · doi:10.1007/BF02392879
[29] Kolodziej, S. Stability of solutions to the complex Monge-Ampère equation on compact Kähler manifolds, preprint (2001).
[30] Lau, C. F.; Rumely, R.; Varley, R., Existence of the sectional capacity, Mem. Amer. Math. Soc., 145, 690, viii-130 (2000) · Zbl 0987.14018
[31] Molzon, R. and Shiffman, B. Capacity, Tchebycheff constant, and transfinite hyperdiameter on complex projective space, Seminar Pierre Lelong-Henri Skoda, (Analysis), 1980/1981, and Colloquium at Wimereux, May 1981, 337-357,Lecture Notes in Math. 919, Springer-Verlag, (1982). · Zbl 0489.31006
[32] Molzon, R.; Shiffman, B.; Sibony, N., Average growth estimates for hyperplane sections of entire analytic sets, Math. Ann., 257, 1, 43-59 (1981) · Zbl 0537.32009 · doi:10.1007/BF01450654
[33] Sibony, N. Dynamique des applications rationnelles deP^k, inDynamique et Géométrie Complexes, (Lyon, 1997),Panor. Synthèses Soc. Math. France, Paris, 97-185, (1999). · Zbl 1020.37026
[34] Sibony, N.; Wong, P. M., Some remarks on the Casorati-Weierstrass theorem, Ann. Polon. Math., 39, 165-174 (1981) · Zbl 0476.32005
[35] Siciak, J., On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc., 105, 322-357 (1962) · Zbl 0111.08102 · doi:10.2307/1993631
[36] Siciak, J., Extremal plurisubharmonic functions and capacities inC^n (1982), Tokyo: Sophia Univ., Tokyo · Zbl 0579.32025
[37] Tian, G., Canonical metrics in Kähler geometry, Lect. Mat. ETH Zürich, vi-101 (2000), Basel: Birkhäuser, Verlag, Basel · Zbl 0978.53002
[38] Zaharjuta, V. P., Extremal plurisubharmonic functions, orthogonal polynomials and Berstein-Walsh theorem for analytic functions of several variables, Ann. Polon. Math., 33, 137-148 (1976) · Zbl 0341.32011
[39] Zeriahi, A., A criterion of algebraicity for Lelong classes and analytic sets, Acta Math., 184, 1, 113-143 (2000) · Zbl 1016.32015 · doi:10.1007/BF02392783
[40] Zeriahi, A., Volume and capacity of sublevel sets of a Lelong class of plurisubharmonic functions, Indiana Univ. Math. J., 50, 1, 671-703 (2001) · Zbl 1138.31302 · doi:10.1512/iumj.2001.50.2062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.