zbMATH — the first resource for mathematics

Existence of positive periodic solutions of nonlinear discrete model exhibiting the Allee effect. (English) Zbl 1087.39015
Using the coincidence degree theorem as well as some a priori estimates, the authors establish a sufficient condition for the existence of positive periodic solution to the discrete nonlinear delay population model with Allee effect \[ x(n+1)=x(n)\exp(a(n)+b(n)x^p(n-\omega)-c(n)x^q(n-\omega)), \] where \(a(n)\), \(b(n)\), and \(c(n)\) are positive sequences of period \(\omega\) and \(p\) and \(q\) are positive integers.

39A11 Stability of difference equations (MSC2000)
92D25 Population dynamics (general)
Full Text: DOI
[1] Allee, W.C., Animal aggregation, Quart. rev. biol., 2, 367-398, (1927)
[2] Allee, W.C., Animal aggregation, A study in general sociology, (1933), Chicago University Press Chicago
[3] Elabbasy, E.M.; Saker, S.H.; Saif, K., Oscillation of nonlinear delay differential equations with application to models exhibiting the allee effect, Far east J. math. sci., 1, 4, 603-620, (1999) · Zbl 0939.34061
[4] Elaydi, S., Global stability of nonlinear difference equations, J. diff. eqn. appl., 2, 87-96, (1996) · Zbl 0858.39005
[5] Fan, M.; Wang, K., Periodic solutions of a discrete time nonautonomous ratio-dependent predator-prey system, Math. comp. model., 35, 951-961, (2002) · Zbl 1050.39022
[6] Gaines, R.E.; Mawhin, J.L., Coincidence degree and nonlinear differential equations, (1977), Springer Berlin · Zbl 0326.34021
[7] Gopalsamy, K.; Ladas, G., On the oscillation and asymptotic behavior of \(\dot{N}(t) = N(t) [a + \mathit{bN}(t - \tau) - \mathit{cN}^2(t - \tau)]\), Quart. appl. math., 3, 433-440, (1990) · Zbl 0719.34118
[8] Kelley, W.G.; Peterson, A.C., Difference equations; an introduction with applications, (1991), Academic Press New York · Zbl 0733.39001
[9] Kocic, V.L.; Ladas, G., Global behavior of nonlinear difference equations of higher order, (1993), Kluwer Academic Publishers Dordrecht · Zbl 0787.39001
[10] Kuang, Y., Delay differential equations with applications in population dynamics, (1993), Academic Press New York · Zbl 0777.34002
[11] Kubiaczyk, I.; Saker, S.H., Oscillation and global attractivity of discrete survival red blood cells model, Applicationes mathematicae, 30, 441-449, (2003) · Zbl 1057.39002
[12] Ladas, G.; Qian, C., Oscillation and global stability in delay logistic equation, Dyn. syst. appl., 9, 153-162, (1994) · Zbl 0806.34069
[13] Lalli, B.S.; Zhang, B.G., On a periodic delay population model, Quart. appl. math., 52, 35-42, (1994) · Zbl 0788.92022
[14] Liu, P.; Gopalsamy, K., Global stability and chaos in a population model with piecewise constant arguments, Appl. math. comp., 101, 63-88, (1999) · Zbl 0954.92020
[15] Nicholson, A.J., The balance of animal population, J. animal ecol., 2, 132-178, (1993)
[16] Saker, S.H., Oscillation and global attractivity in hematopoiesis model with periodic coefficients, Appl. math. comp., 142, 477-494, (2003) · Zbl 1048.34114
[17] Saker, S.H.; Agarwal, S., Oscillation and global attractivity in nonlinear delay periodic model of population dynamics, Appl. anal., 81, 787-799, (2002) · Zbl 1041.34061
[18] S.H. Saker S. Agarwal, Oscillation and global attractivity of a periodic survival red blood cells model, J. Dyn. Continuous, Discrete Impulsive Syst. Series B: Appl. Algorithms, in press. · Zbl 1078.34062
[19] Saker, S.H.; Agarwal, S., Oscillation and global attractivity in a periodic nicholson’s blowflies model, Math. comp. model., 35, 719-731, (2002) · Zbl 1012.34067
[20] Saker, S.H.; Agarwal, S., Oscillation and global attractivity in a nonlinear delay periodic model of respiratory dynamics, Comp. math. appl., 44, 623-632, (2002) · Zbl 1041.34073
[21] Yan, J.; Feng, Q., Global attractivity and oscillation in a nonlinear delay equation, Nonlinear anal., 43, 101-108, (2001) · Zbl 0987.34065
[22] Zhang, R.Y.; Wang, Z.C.; Chen, Y.; Wu, J., Periodic solutions of a single species discrete population model with periodic harvest/stock, Comp. math. appl., 39, 77-90, (2000) · Zbl 0970.92019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.