zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Modified Laguerre pseudospectral method refined by multidomain Legendre pseudospectral approximation. (English) Zbl 1087.65079
Consider a differential equation on the half-line like, e.g., $-U''(x) + \lambda U(x) = f(x)$, $U(0) = \lim_{x \to \infty} U(x) = 0$ with some $\lambda > 0$. For the numerical solution of such equations, a two-stage approach is suggested and analyzed. The first stage consists of a variant of the classical pseudospectral method of Laguerre type. This typically provides a highly accurate numerical solution at the collocation points, but not in the intervals between them. Thus a multidomain Legendre method is added in the second stage in order to improve the overall result.

65L60Finite elements, Rayleigh-Ritz, Galerkin and collocation methods for ODE
65L10Boundary value problems for ODE (numerical methods)
34B05Linear boundary value problems for ODE
Full Text: DOI
[1] Babuška, I.; Guo, B. Q.: Direct and inverse approximation theorems for the p-version of the finite element methods in the framework of weighted Besov spaces, part I. Approximability of functions in the weighted Besov spaces. SIAM J. Numer. anal. 39, 1512-1538 (2001) · Zbl 1008.65078
[2] C. Bernardi, Y. Maday, Spectral methods, in: P.G. Ciarlet, J.L. Lions (Eds.), Handbook of Numerical Analysis, vol. 5, Techniques of Scientific Computing, Elsevier, Amsterdam, 1997, pp. 209 -- 486.
[3] Coulaud, O.; Funaro, D.; Kavian, O.: Laugerre spectral approximation of elliptic problems in exterior domains. Comput. mech. Appl. mech. Eng. 80, 451-458 (1990) · Zbl 0734.73090
[4] D. Funaro, Estimates of Laguerre spectral projectors in Sobolev spaces, in: C. Brezinski, L. Gori, A. Ronveaux (Eds.), Orthogonal Polynomials and Their Applications, Scientific Publishing Co., Singapore, 1991, pp. 263 -- 266. · Zbl 0842.46017
[5] Guo, B. -Y.: Jacobi approximations in certain Hilbert spaces and their applications to singular differential equations. J. math. Anal. appl. 243, 373-408 (2000) · Zbl 0951.41006
[6] Guo, B. -Y.; Shen, J.: Laguerre -- Galerkin method for nonlinear partial differential on a semi-infinite interval. Numer. math. 86, 635-654 (2000) · Zbl 0969.65094
[7] Guo, B. -Y.; Wang, L. -L.: Jacobi interpolation approximations and their applications to singular differential equations. Adv. comput. Math. 14, 227-276 (2001) · Zbl 0984.41004
[8] H.-P. Ma, B.-Y. Guo, A multidomain Legendre pseudospectral method for the Burgers-like equation, unpublished.
[9] Maday, Y.; Pernaud-Thomas, B.; Vandeven, H.: Une réhabilitation des méthodes spéctrales de type Laguerre. Rech. aerospat. 6, 353-379 (1985) · Zbl 0604.42026
[10] Mastroianni, G.; Occorsio, D.: Lagrange interpolation at Laguerre zeros in some weighted uniform spaces. Acta. math. Hungar. 91, 27-52 (2001) · Zbl 0980.41002
[11] Shen, J.: Stable and efficient spectral methods in unbounded domains using Laguerre functions. SIAM J. Numer. anal. 38, 1113-1133 (2000) · Zbl 0979.65105
[12] G. Szegö, Orthogonal Polynomials, Amer. Math. Soc., Providence, RI, 1959.
[13] L.-L. Wang, B.-Y. Guo, Stair Laguerre pseudospectral method for differential equations on the half line, Adv. Comput. Math., in press. · Zbl 1098.65084
[14] Xu, C. -L.; Guo, B. -Y.: Laguerre pseudospectral method for nonlinear partial differential equations. J. comput. Math. 20, 413-428 (2002) · Zbl 1005.65115