Zudilin, Wadim Computing powers of two generalizations of the logarithm. (English) Zbl 1088.11015 Sémin. Lothar. Comb. 53, B53c, 6 p. (2005). Summary: We prove multiple-series representations for positive integer powers of the series \[ L(z;\alpha)=\sum_{n=1}^\infty\frac{z^n}{n+\alpha},\;\; |z|<1, \; \alpha\geq0, \quad\hbox{and}\quad \ell_q(z)=\sum_{n=1}^\infty\frac{z^nq^n}{1-q^n},\;\; |z|\leq1, \; |q|<1. \] The results generalize a known formula for powers of the series for the ordinary logarithm \(-\log(1-z) = L(z;0)\). Cited in 1 Document MSC: 11B65 Binomial coefficients; factorials; \(q\)-identities 05E05 Symmetric functions and generalizations 33B10 Exponential and trigonometric functions 33D15 Basic hypergeometric functions in one variable, \({}_r\phi_s\) PDF BibTeX XML Cite \textit{W. Zudilin}, Sémin. Lothar. Comb. 53, B53c, 6 p. (2005; Zbl 1088.11015) Full Text: EuDML EMIS OpenURL