zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Nonlinear functionals and a theorem of Sun. (English) Zbl 1088.34026
The authors study the linear second-order matrix differential equation $$[P(t)Y']'+Q(t)Y=0, \qquad t\geq t_0, \tag1$$ where $P(t)$ and $Q(t)$ are real continuous and symmetric $n\times n$-matrix functions on $[t_0, \infty)$ and $P(t)$ is positive definite. The authors derive new oscillation criteria for equation (1) involving integrals of the coefficients. These criteria extend several results of {\it Y. Sun} [Appl. Math. Lett. 17, No. 8, 875--880 (2004; Zbl 1061.34023)].

MSC:
34C11Qualitative theory of solutions of ODE: growth, boundedness
WorldCat.org
Full Text: DOI
References:
[1] Allegretto, W.; Erbe, L.: Oscillation criteria for matrix differential inequalities. Canad. math. Bull. 16, 5-10 (1973) · Zbl 0275.34034
[2] Butler, G. J.; Erbe, L.: Oscillation results for second order differential systems. SIAM J. Math. anal. 17, 19-29 (1986) · Zbl 0583.34027
[3] Butler, G. J.; Erbe, L. H.: Oscillation results for self-adjoint differential systems. J. math. Anal. appl. 115, 470-481 (1986) · Zbl 0588.34025
[4] Butler, G. J.; Erbe, L. H.; Mingarelli, A. B.: Riccati techniques and variational principles in oscillation theory for linear systems. Trans. amer. Math. soc. 503, 263-282 (1987) · Zbl 0648.34031
[5] Byers, R.; Harris, B. J.; Kwong, M. K.: Weighted means and oscillation conditions for second order matrix differential equations. J. differential equations 61, 164-177 (1986) · Zbl 0609.34042
[6] Chen, B. -S.: Oscillation criteria for nonlinear second-order damped differential equations. Acta math. Appl. sinica 15, 166-173 (1992) · Zbl 0759.34027
[7] Coles, W. J.: An oscillation criterion for second-order linear differential equations. Proc. amer. Math. soc. 19, 755-759 (1968) · Zbl 0172.11702
[8] Erbe, L. H.; Kong, Q.; Ruan, S.: Kamenev type theorems for second order matrix differential systems. Proc. amer. Math. soc. 117, 957-962 (1993) · Zbl 0777.34024
[9] Etgen, G. J.; Lewis, R. T.: Positive functionals and oscillation criteria for second order differential systems. Optimal control and differential equations, 245-275 (1978)
[10] Etgen, G. J.; Lewis, R. T.: Positive functionals and oscillation criteria for differential systems. Proc. Edinburgh math. Soc. 22, 277-290 (1979) · Zbl 0429.34032
[11] Fite, W. B.: Concerning the zeros of the solutions of certain differential equations. Trans. amer. Math. soc. 19, 341-352 (1918) · Zbl 46.0702.02
[12] Hartman, P.: On non-oscillatory linear differential equations of second order. Amer. J. Math. 74, 389-400 (1952) · Zbl 0048.06602
[13] Hartman, P.: Oscillation criteria for self-adjoint second order differential systems and principal sectional curvatures. J. differential equations 34, 326-338 (1979) · Zbl 0443.34029
[14] Hartman, P.: Comparison theorems for self-adjoint second order systems and uniqueness of eigenvalues of scalar boundary value problems. Contributions to analysis and geometry, 1-22 (1981)
[15] Hinton, D.; Lewis, T.: Oscillation theory for generalized second-order differential equations. Rocky mountain J. Math. 10, No. 4, 751-766 (1980) · Zbl 0485.34021
[16] Kamenev, I. V.: An integral criterion for oscillation of linear differential equations of second order. Mat. zametki 23, 249-251 (1978) · Zbl 0386.34032
[17] Kaper, H. G.; Kwong, M. K.: Oscillation of two-dimensional linear second-order differential systems. J. differential equations 56, 195-205 (1985) · Zbl 0571.34024
[18] Kong, Q.: Interval criteria for oscillation of second-order linear ordinary differential equations. J. math. Anal. appl. 229, 258-270 (1999) · Zbl 0924.34026
[19] Kwong, M. K.; Zettl, A.: Asymptotically constant functions and second order linear oscillation. J. math. Anal. appl. 93, 475-494 (1983) · Zbl 0525.34026
[20] Kwong, M. K.; Kaper, H. G.; Akiyama, K.; Mingarelli, A. B.: Oscillation of linear second order differential systems. Proc. amer. Math. soc. 91, 85-91 (1984) · Zbl 0556.34026
[21] Leighton, W.: The detection of oscillation of solutions of a second-order linear differential equation. Duke math. J. 17, 57-62 (1950) · Zbl 0036.06101
[22] Li, H. J.: Oscillation criteria for second order linear differential equations. J. math. Anal. appl. 194, 217-234 (1995) · Zbl 0836.34033
[23] Meng, F.; Wang, J.; Zheng, Z.: A note on kamenev type theorems for second order matrix differential systems. Proc. amer. Math. soc. 126, 391-395 (1998) · Zbl 0891.34037
[24] Meng, F.; Mingarelli, A. B.: Oscillation of linear Hamiltonian systems. Proc. amer. Math. soc. 131, 897-904 (2002) · Zbl 1008.37032
[25] Mingarelli, A. B.: On a conjecture for oscillation of second-order ordinary differential systems. Proc. amer. Math. soc. 82, 593-598 (1981) · Zbl 0487.34030
[26] Mingarelli, A. B.: Nonlinear functionals in oscillation theory of matrix differential systems. Comm. pure appl. Anal. 3, 75-84 (2004) · Zbl 1055.34067
[27] Philos, Ch.G.: Oscillation theorems for linear differential equations of second order. Arch. math. 53, 482-492 (1989) · Zbl 0661.34030
[28] Ross, S.: A first course in probability. (1988) · Zbl 0327.60003
[29] Y. Sun, New Kamenev type theorems for second order linear matrix differential systems, Appl. Math. Lett. 2004, in press · Zbl 1061.34023
[30] Swanson, C. A.: Comparison and oscillation theory of linear differential equations. (1968) · Zbl 0191.09904
[31] Tomastik, E. C.: Oscillation of systems of second order differential equations. J. differential equations 9, 436-442 (1971) · Zbl 0237.34058
[32] Walters, T. J.: A characterization of positive linear functionals and oscillation criteria for matrix differential equations. Proc. amer. Math. soc. 78, 198-202 (1980) · Zbl 0446.34038
[33] Willett, D.: On the oscillatory behaviour of the solutions of second order linear differential equations. Ann. polon. Math. 21, 175-194 (1969) · Zbl 0174.13701
[34] Wintner, A.: A criterion of oscillatory stability. Quart. appl. Math. 7, 115-117 (1949) · Zbl 0032.34801
[35] Wong, J. S. W.: On kamenev-type oscillation theorems for second-order differential equations with damping. J. math. Anal. appl. 258, 244-257 (2001) · Zbl 0987.34024
[36] Yan, J.: A note on an oscillatory criterion for an equation with damped term. Proc. amer. Math. soc. 90, 277-280 (1984) · Zbl 0542.34028
[37] Yeh, C. C.: Oscillation theorems for nonlinear second-order differential equations with a damped term. Proc. amer. Math. soc. 84, 397-402 (1982) · Zbl 0498.34023
[38] Yu, Y. H.: Leighton type oscillation criterion and Sturm type comparison theorem. Math. nachr. 153, 137-143 (1991) · Zbl 0795.34025