Chen, Aihua; Li, Xuemei Darboux transformation and soliton solutions for Boussinesq-Burgers equation. (English) Zbl 1088.35527 Chaos Solitons Fractals 27, No. 1, 43-49 (2006). Summary: We present a new Darboux transformation with multi-parameters for the Boussinesq-Burgers equation \[ u_t=-2uu_x+ \tfrac12 v_x, \qquad v_t= \tfrac12 u_{xxx}- 2(uv)_x \] and obtain new soliton solutions. Cited in 21 Documents MSC: 35Q35 PDEs in connection with fluid mechanics 37K35 Lie-Bäcklund and other transformations for infinite-dimensional Hamiltonian and Lagrangian systems 35Q51 Soliton equations Keywords:Darboux transformation; soliton solutions PDF BibTeX XML Cite \textit{A. Chen} and \textit{X. Li}, Chaos Solitons Fractals 27, No. 1, 43--49 (2006; Zbl 1088.35527) Full Text: DOI OpenURL References: [1] Newell, A.C., Solitons in mathematics and physics, (1985), SIAM Philadelphia · Zbl 0565.35003 [2] Ablowitz, M.J.; segur, H., Solitons and the inverse scattering transform, (1981), SIAM Philadelphia · Zbl 0299.35076 [3] Faddeev, L.D.; Takhtajan, L.A., Hamiltonian methods in the theory of solitons, (1987), Springer Berlin · Zbl 1327.39013 [4] Novikov, S.P.; Manakov, S.V.; Pitaevskii, L.P.; Zakharov, V.E., Theory of solitons, the inverse scattering methods, (1980), Nauka Moskva · Zbl 0598.35003 [5] Gu, C.H., Soliton theory and its application, (1995), Springer Berlin [6] Zakharov, V.E.; Shabat, A.B., Sov. phys. JETP, 34, 62, (1972) [7] Geng, X.G.; Tam, H.W., J. phys. soc. jpn., 68, 1508, (1999) [8] Levi, D., Inverse problems, 4, 165, (1988) [9] Gu, C.H.; Zhou, Z.X., Lett. math. phys., 32, 1, (1994) [10] Li, Y.S., J. phys. A: math. general, 29, 4187, (1996) [11] Li, Y.S.; Ma, W.X.; Zhang, J.E., J. phys. lett. A, 275, 60, (2000) [12] Fan, E.G., J. phys. A, 33, 6925, (2000) [13] Geng, X.G., J. phys. A, 180, 241, (1992) [14] Zhang, J.S.; Wu, Y.T.; Li, X.M., J. phys. A, 319, 213, (2003) [15] Kaup, D.J., Prog. theor., 54, 396, (1975) [16] Kupershmidt, Commun. J. math. phys., 99, 51, (1985) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.