zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Exponential attractors and finite-dimensional reduction for non-autonomous dynamical systems. (English) Zbl 1088.37005
Summary: We suggest a new explicit algorithm allowing us to construct exponential attractors which are uniformly Hölder continuous with respect to the variation of the dynamical system in some natural large class. Moreover, we extend this construction to nonautonomous dynamical systems (dynamical processes) treating in that case the exponential attractor as a uniformly exponentially attracting, finite-dimensional and time-dependent set in the phase space. In particular, this result shows that, for a wide class of nonautonomous equations of mathematical physics, the limit dynamics remains finite-dimensional no matter how complicated the dependence of the external forces on time is. We illustrate the main results on the model example of a nonautonomous reaction-diffusion system in a bounded domain.

37B55Nonautonomous dynamical systems
37L30Attractors and their dimensions, Lyapunov exponents
37C70Attractors and repellers, topological structure
35K57Reaction-diffusion equations
35B41Attractors (PDE)
Full Text: DOI