Guedj, Vincent Ergodic properties of rational mappings with large topological degree. (English) Zbl 1088.37020 Ann. Math. (2) 161, No. 3, 1589-1607 (2005). Let \(X\) be a projective algebraic manifold of dimension \(k\) and \(\omega\) a Hodge form on \(X\) normalized so that \(\int_X\omega^k=1\). Let \(f:X\rightarrow X\) be a rational mapping such that its Jacobian determinant does not vanish identically in any coordinate chart. Define the \(l\)th dynamical degree of \(f\) to be \[ \lambda_l(f)= \liminf_{n\to+\infty} \left(\int_X(f^n)^*\omega^l\wedge\omega^{k-l}\right)^{1/n}. \] Then \(d_t(f)=\lambda_k(f)\) is just the topological degree of \(f\). The author proves that when \(d_t(f)>\lambda_{k-1}(f)\), there exists a mixing probability measure \(\mu_f\) such that if \(\Theta\) is any smooth probability measure on \(X\), \[ \frac{1}{d_t(f)^n}(f^n)^*\Theta\longrightarrow \mu_f, \] where the convergence holds in the weak sense of measures, and such that \(f^*\mu_f=d_t(f)\mu_f\). In particular, \(\mu_f\) is the unique measure of maximal entropy when \(k\leq 3\) or when \(X\) is complex homogeneous. Thus, the author establishes the foundation of dynamics on rational self-mappings of projective algebraic manifolds. Reviewer: Pei-Chu Hu (Jinan) Cited in 2 ReviewsCited in 39 Documents MSC: 37F10 Dynamics of complex polynomials, rational maps, entire and meromorphic functions; Fatou and Julia sets 32H50 Iteration of holomorphic maps, fixed points of holomorphic maps and related problems for several complex variables 37A20 Algebraic ergodic theory, cocycles, orbit equivalence, ergodic equivalence relations 37B40 Topological entropy Keywords:rational mappings; dynamical degree; topological degree; mixing probability measure; smooth probability measure; maximal entropy; projective algebraic manifolds PDF BibTeX XML Cite \textit{V. Guedj}, Ann. Math. (2) 161, No. 3, 1589--1607 (2005; Zbl 1088.37020) Full Text: DOI Euclid OpenURL