zbMATH — the first resource for mathematics

The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations. (English) Zbl 1088.37049
The article deals with the 2D quasi-geostrophic equations with dissipation, i.e., \(\theta_t + u\cdot \nabla \theta + \kappa (-\Delta)^\alpha \theta = f\) in \((0,T)\times \Omega\), where \(u=(-\frac{\partial \psi}{\partial x_2}, \frac{\partial \psi}{\partial x_1})\), \((-\Delta)^\frac {1}{2} \psi = \theta\) and either \(\Omega =\mathbb{R}^2\) or \(\Omega\) a rectangle with space periodic boundary conditions.
The author improves the positivity lemma shown by A. Córdoba and D. Córdoba [Proc. Natl. Acad. Sci. USA 100, No. 26, 15316–15317 (2003; Zbl 1111.26010)] \[ \int_\Omega | \theta| ^{p-2}\theta (-\Delta)^{s/2} \theta dx \geq \frac{C}{p} \int_\Omega | (-\Delta)^{s/4} \theta^{p/2}| ^2 dx \] in two aspects. The constant \(C=2\) (while in the above cited paper \(C=1\)) and it holds for any \(p\geq 2\) (while in the above cited paper \(p=2^n\), \(n\) natural number).
Thus, a solution in \(L^p(\Omega)\) decays to zero. Further, due to the positivity lemma, the author is able to prove the existence of the global attractor in the space \(H^s(\Omega)\) for all \(s>2(1-\alpha)\).

37N10 Dynamical systems in fluid mechanics, oceanography and meteorology
35Q35 PDEs in connection with fluid mechanics
37L30 Attractors and their dimensions, Lyapunov exponents for infinite-dimensional dissipative dynamical systems
86A05 Hydrology, hydrography, oceanography
Full Text: DOI
[1] Babin, A., Vishik, M.: Attractor of Evolution Equations. Amsterdam: North-Holland, 1992 · Zbl 0778.58002
[2] Berselli, L.: Vanishing viscosity limit and long-time behavior for 2D quasi-geostrophic equations. Indiana Univ. Math. J. 51, No. 4, 905-930 (2002) · Zbl 1044.35055
[3] Chae, D., Lee, J.: Global well-posedness in the super-critical dissipative quasi-geostrophic equations. Commun. Math. Phys. 233, No. 2, 297-311 (2003) · Zbl 1019.86002
[4] Constantin, P., Cordoba, D., Wu, J.: On the critical dissipative quasi-geostrophic equations. Indiana Univ. Math. J. 50, 97-107 (2001) · Zbl 0989.86004
[5] Constantin, P., Foias, C.: Global Lyapunov exponents, Kaplan-Yorke formulas and the dimension of the attractors for two-dimensional Navier-Stokes equations. Comm. Pure Appl. Math. 38, 1-27 (1985) · Zbl 0582.35092
[6] Constantin, P., Foias, C.: Navier-Stokes Equations. Chicago, IL: Chicago University Press. 1988 · Zbl 0687.35071
[7] Constantin, P., Majda, A., Tabak, E.: Formation of strong fronts in the 2-D quasi-geostrophic thermal active scalar. Nonlinearity 7, 1495-1533 (1994) · Zbl 0809.35057
[8] Constantin, P., Wu, J.: Behavior of solutions of 2D quasi-geostrophic equations. SIAM J. Math. Anal. 30, 937-948 (1999) · Zbl 0957.76093
[9] Cordoba, D.: Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation. Ann. of Math. 148, 1135-1152 (1998) · Zbl 0920.35109
[10] Córdoba, A., Córdoba, D.: A pointwise estimate for fractionary derivatives with applications to P.D.E., PNAS 100, 15316-15317 (2003) · Zbl 1111.26010
[11] Córdoba, A., Córdoba, D.: A maximum principle applied to quasi-geostrophic equations. Commun. Math. Phys. 249, 551-528 (2004) · Zbl 1309.76026
[12] Cordoba, D., Fefferman, C.: Growth of solutions for QG and 2D Euler equations. J. Amer. Math. Soc. 15, no. 3, 665-670 (2002) · Zbl 1013.76011
[13] Foias, C., Prodi, G.: Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension 2. Rend. Sem. Mat. Univ. Padova 39, 1-34 (1967) · Zbl 0176.54103
[14] Hale, J.: Asymptotic Behavior of Dissipative Systems. Providence, RI: American Mathematical Society, 1988 · Zbl 0642.58013
[15] Held, I., Pierrehumbert, R., Garner, S., Swanson, K.: Surface quasi-geostrophic dynamics. J. Fluid Mech. 282, 1-20 (1995) · Zbl 0832.76012
[16] Ju, N.: On the two dimensional quasi-geostrophic equations. Preprint, 2003
[17] Ju, N.: Existence and Uniqueness of the Solution to the Dissipative 2D Quasi-Geostrophic Equations in the Sobolev Space. Commun. Math. Phys. 251, 365-376 (2004) · Zbl 1106.35061
[18] Kenig, C., Ponce, G., Vega, L.: Well-posedness of the initial value problem for the Korteweg-De Vries equation. J. Amer. Math. Soc. 4, 323-347 (1991) · Zbl 0737.35102
[19] Ladyzhskaya, O.: Attractors for Semigroups and Evolution Equations. Cambridge: Cambridge Univeristy Press, 1991
[20] Lions, J.L.: Quelques Méthode de Résolution des Problèmes aux Limites Non Linéaires. Paris: Dunod, 1969
[21] Lions, J.L., Magenes, B.: Nonhomogeneous Boundary Value Problems and Applications. New York: Springer-Verlag, 1972 · Zbl 0223.35039
[22] Majda, A., Tabak, E.: A two-dimensional model for quasi-geostrophic flow: comparison with the two-dimensional Euler flow. Physica D 98, 515-522 (1996) · Zbl 0899.76105
[23] Ohkitani, K., Yamada, M.: Inviscid and inviscid limit behavior of a surface quasi-geostrophic flow. Phys. Fluids 9, 876-882 (1997) · Zbl 1185.76841
[24] Pedlosky, J.: Geophysical Fluid Dynamics. New York: Springer-Verlag, 1987 · Zbl 0713.76005
[25] Resnick, S.: Dynamical Problems in Non-linear Advective Partial Differential Equations. Ph.D. thesis, University of Chicago, 1995
[26] Schonbek, M., Schonbek, T.: Asymptotic Behavior to Dissipative Quasi-Geostrophic Flows. SIAM J. Math. Anal. 35, 357-375 (2003) · Zbl 1126.76386
[27] Sell, G.: Global attractor for the three-dimensional Navier-Stokes equations. J. Dyn. and Differ. Eqs. 8, 1-33 (1996) · Zbl 0855.35100
[28] Stein, E.: Singular Integrals and Differentiability Properties of Functions. Princeton, NJ: Princeton University Press, 1970 · Zbl 0207.13501
[29] Temam, R.: Navier-Stokes Equations Theory and Numerical Analysis. Amsterdam: North-Holland, 1977, Revised Editions, 1984 · Zbl 0383.35057
[30] Temam, R.: Infinite Dimensional Dynamical Systems in Mechanics and Physics Berlin-Heidelberg-NewYork: Springer-Verlag, 1988, 2nd Edition, 1997 · Zbl 0662.35001
[31] Wu, J.: Inviscid limits and regularity estimates for the solutions of the 2D dissipative quasi-geostrophic equations. Indiana Univ. Math. J. 46, 1113-1124 (1997) · Zbl 0909.35111
[32] Wu, J.: The 2D Disspative Quasi-Geostrophic Equation. Appl. Math. Lett. 15, 925-930 (2002) · Zbl 1016.35060
[33] Wu, J.: The Quasi-Geostrophic Equation and Its Two regularizations. Commun. Partial Diff. Eqs. 27, 1161-1181 (2002) · Zbl 1012.35067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.