zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Nonconvolution nonlinear integral Volterra equations with monotone operators. (English) Zbl 1088.45004
The authors study nonlinear Volterra integral equations of the form $$ u(x) = \int_0^x k(x,s)g(u(s))\, ds, \quad t \geq 0, $$ where $k$ is locally bounded, the function $x\mapsto \int_0^x k(x,s)\, ds$ is strictly increasing and $g$ is continuous, and strictly increasing. They prove results about existence, uniqueness and attractive behaviour of positive solutions to this equation by showing that under certain additional assumptions the solutions behave in the same way as solutions to convolution equations. Finally some examples are given showing the wide range of situations that appear if the nonconvolution kernel is not assumed to be locally bounded.

45G10Nonsingular nonlinear integral equations
Full Text: DOI arXiv
[1] Arias, M. R.: Existence and uniqueness of solutions for nonlinear Volterra equations. Math. proc. Camb. phil. Soc. 129, 361-370 (2000) · Zbl 0966.45004
[2] Arias, M. R.; Castillo, J. M. F.: Inverse characterization of the existence of solutions for some nonlinear Abel-Volterra equations. Nonlinear anal. T.M.A. 34, 433-442 (1998) · Zbl 0931.45003
[3] Bushell, P. J.; Okrasinski, W.: Nonlinear Volterra integral equations with convolution kernel. J. London math. Soc. 2, 503-510 (1990) · Zbl 0714.45006
[4] Gripenberg, G.: Unique solutions of some Volterra integral equations. Math. scan. 48, 59-67 (1981) · Zbl 0463.45002
[5] Mydlarczyk, W.: The existence of nontrivial solutions of Volterra equations. Math. scand. 68, 83-88 (1991) · Zbl 0701.45002
[6] Zeidler, E.: Nonlinear functional analysis and its applications. Volume I: Fixed point theorems. (1990) · Zbl 0684.47029
[7] Arias, M. R.; Benitez, R.: A note of the uniqueness and the attractive behaviour of solutions for nonlinear Volterra equations. J. integral equations app. 13, No. 4, 305-310 (2001)
[8] Arias, M. R.; Castillo, J. M. F.: Attracting solutions of nonlinear Volterra integral equations. J. integral equations app. 11, 299-308 (1999) · Zbl 0974.45004
[9] Szwarc, R.: Attraction principle for nonlinear integral operators of the Volterra type. J. math. Anal. appl. 170, 449-456 (1992) · Zbl 0765.45002
[10] Arias, M. R.; Benitez, R.: Aspects of the behaviour of solutions for nonlinear Abel equations. Nonlinear anal. T.M.A. 54, 1241-1249 (2003) · Zbl 1030.45003
[11] Mydlarczyk, W.: The blow-up solutions of integral equations. Colloquium mathematicum 79, No. 1, 147-156 (1999) · Zbl 0919.45003
[12] Askhabov, S. N.: Integral equations of convolution type with power nonlinearity. Colloquium mathematicum 62, No. 1, 49-65 (1991) · Zbl 0738.45003
[13] Karapetyants, N. K.; Kilbas, A. A.; Saigo, M.; Samko, S. G.: Upper and lower bounds for solutions of nonlinear Volterra convolution integral equations with power nonlinearity. J. integral equations app. 12, No. 4, 421-448 (2000) · Zbl 0982.45003
[14] M.R. Arias and R. Benitez, Properties of the solutions for nonlinear Volterra integral equations, Discrete and Continuous Dynamical Systems, Proceedings of the 4th International Conference on Dynamical Systems and Differential Equations, p. 42--47.