zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Steepest descent method for system of fuzzy linear equations. (English) Zbl 1088.65026
Summary: The steepest descent method, for solving systems of fuzzy linear equations is considered. The method is discussed in detail and followed by a convergence theorem and illustrated by solving some numerical examples.

65F10Iterative methods for linear systems
08A72Fuzzy algebraic structures
Full Text: DOI
[1] Allahviranloo, T.: Numerical methods for fuzzy system of linear equations. Appl. math. Comput. 155, 493-502 (2004) · Zbl 1067.65040
[2] Allahviranloo, T.: Successive over relaxation iterative method for fuzzy system of linear equations. Appl. math. Comput. 162, 189-196 (2005) · Zbl 1062.65037
[3] Allahviranloo, T.: The Adomian decomposition method for fuzzy system of linear equations. Appl. math. Comput. 163, 553-563 (2005) · Zbl 1069.65025
[4] Datta, B. N.: Numerical linear algebra and applications. (1995) · Zbl 1182.65001
[5] Dubois, D.; Prade, H.: Fuzzy sets and systems: theory and application. (1980) · Zbl 0444.94049
[6] Friedman, M.; Ming, M.; Kandel, A.: Fuzzy linear systems. Fuzzy sets and systems 96, 201-209 (1998) · Zbl 0929.15004
[7] Friedman, M.; Ming, M.; Kandel, A.: Duality in fuzzy linear systems. Fuzzy sets and systems 109, 55-58 (2000) · Zbl 0945.15002
[8] Goetschell, R.; Voxman, W.: Elementary calculus. Fuzzy sets and systems 18, 31-43 (1986)
[9] Ma, M.; Friedman, M.; Kandel, A.: A new fuzzy arithmetic. Fuzzy sets and systems 108, 83-90 (1999) · Zbl 0937.03059
[10] Wang, X.; Zhong, Z.; Ha, M.: Iteration algorithms for solving a system of fuzzy linear equations. Fuzzy sets and systems 119, 121-128 (2001) · Zbl 0974.65035