×

Modified homotopy perturbation method for nonlinear equations and comparison with Adomian decomposition method. (English) Zbl 1088.65043

Summary: We present some efficient numerical algorithms for solving nonlinear equations based on Newton-Raphson methods by using modified homotopy perturbation methods. The modified Adomian decomposition method presented by S. Abbasbandy [ibid. Appl. Math. Comput. 145, No. 2–3, 887–893 (2003; Zbl 1032.65048)], is compared with new algorithms. Some numerical illustrations are given to show the efficiency of algorithms.

MSC:

65H05 Numerical computation of solutions to single equations
65H20 Global methods, including homotopy approaches to the numerical solution of nonlinear equations

Citations:

Zbl 1032.65048
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Abbasbandy, S., Improving Newton-Raphson method for nonlinear equations by modified Adomian decomposition method, Appl. Math. Comput., 145, 887-893 (2003) · Zbl 1032.65048
[2] Adomian, G., Solving frontier problems of physics: the decomposition method (1994), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0802.65122
[3] Adomian, G.; Rach, R., On the solution of algebraic equations by the decomposition method, Math. Anal. Appl., 105, 141-166 (1985) · Zbl 0552.60060
[4] Abbaoui, K.; Cherruault, Y., Convergence of Adomian’s method applied to nonlinear equations, Math. Comput. Model., 20, 9, 69-73 (1994) · Zbl 0822.65027
[5] Babolian, E.; Biazar, J., Solution of nonlinear equations by modified Adomian decomposition method, Appl. Math. Comput., 132, 167-172 (2002) · Zbl 1023.65040
[6] Hillermeier, C., Generalized homotopy approach to multiobjective optimization, Int. J. Optim. Theory Appl., 110, 3, 557-583 (2001) · Zbl 1064.90041
[7] He, J.-H., An approximate solution technique depending upon an artificial parameter, Commun. Nonlinear Sci. Numer. Simul., 3, 2, 92-97 (1998) · Zbl 0921.35009
[8] He, J.-H., Newton-like iteration method for solving algebraic equations, Commun. Nonlinear Sci. Numer. Simul., 3, 2, 106-109 (1998) · Zbl 0918.65034
[9] He, J.-H., Homotopy perturbation technique, Comput. Mathods Appl. Mech. Engng., 178, 3/4, 257-262 (1999) · Zbl 0956.70017
[10] He, J.-H., A coupling method of homotopy technique and perturbation technique for nonlinear problems, Int. J. Nonlinear Mech., 35, 1, 37-43 (2000) · Zbl 1068.74618
[11] He, J.-H., The homotopy perturbation method for nonlinear oscillators with discontinuities, Appl. Math. Comput., 151, 287-292 (2004) · Zbl 1039.65052
[12] He, J.-H., Comparison of homotopy perturbtion method and homotopy analysis method, Appl. Math. Comput., 156, 527-539 (2004) · Zbl 1062.65074
[13] Householder, A. S., The numerical treatment of a single nonlinear equation (1970), McGraw-Hill: McGraw-Hill New York · Zbl 0242.65047
[14] Kantorovich, L. V.; Akilov, G. P., Functional analysis in normed spaces (1964), Pergamon Press: Pergamon Press Elmsford, NY · Zbl 0127.06104
[16] Liao, S. J., An approximate solution technique not depending on small parameters: a special example, Int. J. Non-Linear Mech., 30, 3, 371-380 (1995) · Zbl 0837.76073
[17] Liao, S. J., Boundary element method for general nonlinear differential operators, Eng. Anal. Boundary Element, 20, 2, 91-99 (1997)
[18] Nayfeh, A. H., Problems in perturbation (1985), J. Wiley: J. Wiley New York · Zbl 0139.31904
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.