zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Homotopy perturbation method for quadratic Riccati differential equation and comparison with Adomian’s decomposition method. (English) Zbl 1088.65063
Summary: A homotopy perturbation method is proposed to solve quadratic Riccati differential equations. Comparisons are made between Adomian’s decomposition method and the exact solution and the proposed method. The results reveal that the proposed method is very effective and simple.

65L05Initial value problems for ODE (numerical methods)
34A34Nonlinear ODE and systems, general
Full Text: DOI
[1] Adomian, G.: Solving frontier problems of physics: the decomposition method. (1994) · Zbl 0802.65122
[2] Adomian, G.; Rach, R.: On the solution of algebraic equations by the decomposition method. Math. anal. Appl. 105, 141-166 (1985) · Zbl 0552.60060
[3] El-Tawil, M. A.; Bahnasawi, A. A.; Abdel-Naby, A.: Solving Riccati differential equation using Adomian’s decomposition method. Appl. math. Comput. 157, 503-514 (2004) · Zbl 1054.65071
[4] Hillermeier, C.: Generalized homotopy approach to multiobjective optimization. Int. J. Optim. theory appl. 110, No. 3, 557-583 (2001) · Zbl 1064.90041
[5] He, J. -H.: An approximate solution technique depending upon an artificial parameter. Commun. nonlinear sci. Simulat. 3, No. 2, 92-97 (1998) · Zbl 0921.35009
[6] He, J. -H.: Variational iteration method: A kind of nonlinear analytical technique: some examples. Int. J. Non-linear mech. 34, No. 4, 699-708 (1999) · Zbl 05137891
[7] He, J. -H.: Homotopy perturbation technique. Comput. meth. Appl. mech. Engng. 178, No. 3/4, 257-262 (1999) · Zbl 0956.70017
[8] He, J. -H.: A coupling method of homotopy technique and perturbation technique for nonlinear problems. Int. J. Nonlinear mech. 35, No. 1, 37-43 (2000) · Zbl 1068.74618
[9] He, J. -H.: A review on some new recently developed nonlinear analytical techniques. Int. J. Nonlinear sci. Numer. simul. 1, No. 1, 51-70 (2000) · Zbl 0966.65056
[10] He, J. -H.: The homotopy perturbation method for nonlinear oscillators with discontinuities. Appl. math. Comput. 151, 287-292 (2004) · Zbl 1039.65052
[11] He, J. -H.: Comparison of homotopy perturbation method and homotopy analysis method. Appl. math. Comput. 156, 527-539 (2004) · Zbl 1062.65074
[12] Liao, S. J.: An approximate solution technique not depending on small parameters: A special example. Int. J. Non-linear mech. 30, No. 3, 371-380 (1995) · Zbl 0837.76073
[13] Liao, S. J.: Boundary element method for general nonlinear differential operators. Eng. anal. Boundary element 20, No. 2, 91-99 (1997)
[14] Nayfeh, A. H.: Problems in perturbation. (1985) · Zbl 0573.34001