zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Knowledge reduction in random information systems via Dempster-Shafer theory of evidence. (English) Zbl 1088.68169
Summary: Knowledge reduction is one of the main problems in the study of rough set theory. This paper deals with knowledge reduction in (random) information systems based on Dempster-Shafer theory of evidence. The concepts of belief and plausibility reducts in (random) information systems are first introduced. It is proved that both of belief reduct and plausibility reduct are equivalent to classical reduct in (random) information systems. The relative belief and plausibility reducts in consistent and inconsistent (random) decision systems are then proposed and compared to the relative reduct and relationships between the new reducts and some existing ones are examined.

68T37Reasoning under uncertainty
Full Text: DOI
[1] Bazan, J. A.: Comparison of dynamic and non-dynamic rough set methods for extracting laws from decision tables. Rough sets in knowledge discovery 1, 321-365 (1998) · Zbl 1067.68711
[2] Beynon, M.: Reducts within the variable precision rough sets model: a further investigation. European journal of operational research 134, 592-605 (2001) · Zbl 0984.90018
[3] Dempster, A. P.: Upper and lower probabilities induced by a multivalued mapping. Annals of mathematical statistics 38, 325-339 (1967) · Zbl 0168.17501
[4] Grzymala-Busse, J.; Zuo, X.: Classification strategies using certain and possible rules. Lnai 1424, 37-44 (1998)
[5] Katzberg, L. D.; Ziarko, W.: Variable precision rough sets with asymmetric bounds. Rough sets, fuzzy sets and knowledge discovery, 167-177 (1994) · Zbl 0819.68041
[6] Komorowski, J.; Pawlak, Z.; Polkowski, L.; Skowron, A.: Rough sets: tutorial. Rough fuzzy hybridization, A new trend in decision making, 3-98 (1999)
[7] Kryszkiewicz, M.: Comparative study of alternative types of knowledge reduction in insistent systems. International journal of intelligent systems 16, 105-120 (2001) · Zbl 0969.68146
[8] Marczewski, E.: A general scheme of independence in mathematics. Bulletin de L academie of polonaise des sciences-serie des sciences mathematiques astronomiques et physiques 6, 731-736 (1958) · Zbl 0088.03001
[9] Mi, J. -S.; Wu, W. -Z.; Zhang, W. -X.: Approaches to knowledge reductions based on variable precision rough sets model. Information sciences 159, No. 3-4, 255-272 (2004) · Zbl 1076.68089
[10] H.S. Nguyen, D. Slezak, Approximation reducts and association rules correspondence and complexity results, in: N. Zhong, A. Skowron, S. Oshuga (Eds.), New Directions in Rough Sets, Data Mining, and Granular-Soft Computing, LNAI 1711, Springer, Berlin, 1999, pp. 137-145. · Zbl 0954.68129
[11] Pawlak, Z.: Rough sets. International journal of computer and information sciences 11, 341-356 (1982) · Zbl 0501.68053
[12] Pawlak, Z.: Rough sets: theoretical aspects of reasoning about data. (1991) · Zbl 0758.68054
[13] Pawlak, Z.: Rough sets. Rough sets and data mining, 3-8 (1997) · Zbl 0866.93063
[14] Pawlak, Z.: Rough set theory and its applications in data analysis. Cybernetics and systems: an international journal 29, 661-688 (1998) · Zbl 1008.03526
[15] Polkowski, L.; Tsumoto, S.; Lin, T. Y.: Rough set methods and applications. (2000)
[16] Quafatou, M.: {$\alpha$}-RST: a generalization of rough set theory. Information sciences 124, 301-316 (2000) · Zbl 0957.68114
[17] Shafer, G.: A mathematical theory of evidence. (1976) · Zbl 0359.62002
[18] Skowron, A.; Grzymala-Busse, J.: From rough set theory to evidence theory. Advance in the Dempster-Shafer theory of evidence, 193-236 (1994)
[19] Skowron, A.; Rauszer, C.: The discernibility matrices and functions in information systems. Intelligent decision support-handbook of applications and advances of the rough sets theory, 331-362 (1992)
[20] D. Slezak, Searching for dynamic reducts in inconsistent decision tables, in: Proceedings of IPMU’98, Paris, France, vol. 2, 1998, pp. 1362-1369.
[21] D. Slezak, Approximate reducts in decision tables. In: Proceedings of IPMU’96, Granada, Spain, vol. 3, 1996, pp. 1159-1164.
[22] Stefanowski, J.: On rough set based approaches to induction of decision rules. Rough sets in knowledge discovery 1, 500-529 (1998) · Zbl 0927.68094
[23] Wu, W. -Z.; Leung, Y.; Zhang, W. -X.: Connections between rough set theory and Dempster-Shafer theory of evidence. International journal of general systems 31, 405-430 (2002) · Zbl 1007.03049
[24] Yao, Y. Y.; Lingras, P. J.: Interpretations of belief functions in the theory of rough sets. Information sciences 104, 81-106 (1998) · Zbl 0923.04007
[25] Zhang, W. -X.; Mi, J. -S.; Wu, W. -Z.: Approaches to knowledge reductions in inconsistent systems. International journal of intelligent systems 21, No. 9, 989-1000 (2003) · Zbl 1069.68606
[26] Zhang, W. -X.; Wu, W. -Z.; Liang, J. -Y.; Li, D. -Y.: Theory and methods of rough sets. (2001)
[27] Ziarko, W.: Variable precision rough set model. Journal of computer and system sciences 46, 39-59 (1993) · Zbl 0764.68162