zbMATH — the first resource for mathematics

Modelling evaporation fronts with reactive Riemann solvers. (English) Zbl 1088.76051
This work deals with the modelling of permeable fronts and the building of a numerical method describing a multi-dimensional propagation of such fronts. Particular attention is paid to evaporation waves which appear in cavitating systems. Such systems leave their metastable liquid state with temperature above the saturated temperature (caused by rarefaction wave excitation) and produce a liquid-vapor mixture at thermodynamic equilibrium, which flows with high velocity (e.g. of about 100 m/s). During such transformations, occuring at finite rate, a subsonic phase transition front propagates through the superheated liquid (with velocity of e.g. 1 m/s). The fronts are considered as discontinuities separating the liquid phase from the liquid-vapor mixture.
In the present paper, no structure of the discontinuity is taken into account. In order to determine the kinetics, the evaporation front is assumed to propagate at maximum admissible speed corresponding to the Chapman-Jouguet deflagration point [J. R. Simões-Moreira, J. E. Shepherd, J. Fluid. Mech. 382, 63–86 (1999; Zbl 0953.76508)]. The Rankine-Hugoniot relations for the equations of state of the liquid and the liquid-vapor mixture are derived to express the mass, momentum and energy conservation across the front. Then the liquid-vapor phase transition is described. Therefore the associated reactive Riemann problem has to be solved. But, in the case of multi-dimensional propagation of permeable fronts which are subsonic, the conventional averaging scheme (such as the Godunov scheme) is inappropriate. To overcome this difficulty, the reactive Riemann problem solution is embedded into the discrete equations method (DEM) [R. Abgrall, R. Saurel, J. Comput. Phys. 186, No. 2, 361–396 (2003; Zbl 1072.76594); R. Saurel, S. Gavrilyuk, F. Renaud, J. Fluid Mech. 495, 283–321 (2003; Zbl 1080.76062)]. Thus, the DEM method is here extended to interfaces and multiphase mixtures and then applied to several two-dimensional examples.
The numerical results are presented and validated over experimental data. Some examples show that the same method may be also applied to the propagation of detonation fronts. The authors believe that the new approach can also be used to propagating flame fronts and ablation fronts such as those encountered in inertial confinement fusion. In the present work, the fluid dynamics has been restricted to the “stiffened gas” equation of state because it was sufficient accurate for the applications. When dealing with other detonation applications, more sophisticated equations of state may be necessary. The building of the reactive Riemann solver seems to be possible in such context, too.

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76V05 Reaction effects in flows
76T10 Liquid-gas two-phase flows, bubbly flows
80A32 Chemically reacting flows
Full Text: DOI
[1] Abeyaratne, R.; Knowles, J., Kinetic relations and the propagation of phase boundaries in solids, Arch. rat. mech. anal., 114, 119-154, (1991) · Zbl 0745.73001
[2] Abgrall, R.; Saurel, R., Discrete equations for physical and numerical compressible multiphase mixtures, J. comp. phys., 186, 361-396, (2003) · Zbl 1072.76594
[3] Arcoumanis, C.; Gavaises, M.; Flora, H.; Roth, H., Visualisation of cavitation in diesel engine injectors, Mec. ind., 2, 375-381, (2001)
[4] Badock, C.; Wirth, R.; Fath, A.; Leipertz, A., Investigation of cavitation in real size diesel injection nozzles, Int. J. heat fluid flow, 20, 538-544, (1999)
[5] Baer, M.R.; Nunziato, J.W., A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials, Int. J. multiphase flows, 12, 861-889, (1986) · Zbl 0609.76114
[6] Bdzil, J.B.; Stewart, D.S., Modelling two-dimensional detonation with detonation shock dynamics, Phys. fluids A, 1, 1261-1267, (1989) · Zbl 0673.76082
[7] L. Brun, Un nouveau modèle macroscopique de la détonation non soutenue dans les explosifs condensés. 3^{rd} International Symposium on High Dynamic Pressures - La Grande Motte, (1989) 103-107
[8] Chinnayya, A.; Daniel, E.; Saurel, R., Modelling detonation waves in heterogeneous energetic materials, J. comp. phys., 196, 490-538, (2004) · Zbl 1109.76335
[9] Chorin, A.J., Random choice methods with applications to reacting gas flow, J. comp. phys., 25, 253-272, (1977) · Zbl 0403.65049
[10] Clavin, P.; Garcia, P., The influence of the temperature dependence of diffusivities on the dynamics flame fronts, J. Mécanique théorique et appliquée, 2, 245-263, (1983) · Zbl 0569.76114
[11] Courant, R.; Friedrichs, K.O., Supersonic flow and shock waves, Applied mathematical sciences, vol. 21, (1948), Springer-Verlag · Zbl 0041.11302
[12] Drew, D.A.; Passman, S.L., Theory of multicomponent fluids, (1998), Springer · Zbl 0919.76003
[13] Fickett, W.; Davis, W.C., Detonation, (1979), University of California Press
[14] C. Fouillet, Généralisation à des mélanges binaires de la méthode du second gradient et application à la simulation numérique directe de l’ébullition nucléée. Ph.D Thesis, Université Paris VI, 2003
[15] Frost, D.L.; Lee, J.H.S.; Ciccarelli, G., The use of hugoniot analysis for the propagation of vapor explosion waves, Shock waves, 1, 99-110, (1991)
[16] Gavrilyuk, S.; Saurel, R., Mathematical and numerical modelling of two-phase compressible flows with micro-inertia, J. comp. phys., 175, 1, 326-360, (2002) · Zbl 1039.76067
[17] Glimm, J., Comm. pure appl. math., 18, 697, (1965)
[18] Godlewski, E.; Raviart, P.-A., Numerical approximation of hyperbolic systems of conservation laws, Applied mathematical sciences, vol. 118, (1996), Springer-Verlag · Zbl 1063.65080
[19] F. Harlow, A. Amsden, Fluid dynamics. monograph LA-4700. Los Alamos National Laboratory, NM, 1971
[20] Jamet, D.; Lebaigue, O.; Coutris, N.; Delhaye, J.M., The second gradient method for the direct numerical simulation of liquid-vapor flows with phase change, J. comp. phys., 169, 624-651, (2001) · Zbl 1047.76098
[21] Kurschat, Th.; Chaves, H.; Meier, G.E.A., Complete adiabatic evaporation of highly superheated liquid jets, J. fluid mech., 236, 43-59, (1992)
[22] LeFloch, P.G.; Rohde, C., High-order schemes, entropy inequalities and nonclassical shocks, SIAM J. numer. anal., 37, 6, 2023-2060, (2000) · Zbl 0959.35117
[23] LeMetayer, O.; Massoni, J.; Saurel, R., Élaboration des lois d’état d’un liquide et de sa vapeur pour LES modèles d’écoulements diphasiques, Int. J. thermal sci., 43, 265-276, (2003)
[24] L. Masse, Etude Linéaire de l’Instabilité du Front d’Ablation en Fusion par Confinement Inertiel. Ph.D Thesis, Université Aix-Marseille I, 2001
[25] Menikoff, R.; Plohr, B.J., The Riemann problem for fluid flow of real materials, Rev. mod. phys., 61, 75-130, (1989) · Zbl 1129.35439
[26] Oldenbourg, R., Properties of water and steam in SI-units, (1989), Springer-Verlag Berlin Heidelberg, New York
[27] Reid, R.C.; Prausnitz, J.M.; Poling, B.E., The properties of gases and liquids, (1987), Mc Graw-Hill
[28] Reinke, P.; Yadigaroglu, G., Explosive vaporization of superheated liquids by boiling fronts, Int. J. multiphase flows, 27, 1487-1516, (2001) · Zbl 1137.76722
[29] Saurel, R.; Gavrilyuk, S.; Renaud, F., A multiphase model with internal degrees of freedom: application to shock-bubble interaction, J. fluid. mech., 495, 283-321, (2003) · Zbl 1080.76062
[30] Saurel, R.; LeMetayer, O., A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation, J. fluid. mech., 431, 239-271, (2001) · Zbl 1039.76069
[31] M. Schaffar, C. Rey, G. Boeglen, Résultats des Essais de Faisabilité de Projectiles Supercavitants tirés Horizontalement dans l’Eau. Rapport de Recherche ISL, R106/2003, Institut Franco-Allemand de Recherches de Saint-Louis, 2003
[32] Simões-Moreira, J.R.; Shepherd, J.E., Evaporation waves in superheated dodecane, J. fluid mech., 382, 63-86, (1999) · Zbl 0953.76508
[33] J.R. Simões-Moreira, Adiabatic Evaporation Waves. Ph.D Thesis, Rensselaer Polytechnic Institute, Troy, New York, 1994
[34] Slemrod, M., Admissibility criteria for propagating phase boundaries in a van der Waals fluid, Arch. rat. mech. anal., 81, 301-315, (1983) · Zbl 0505.76082
[35] Teng, Z.-H.; Chorin, A.J.; Liu, T.-P., Riemann problems for reacting gas, with applications to transition, SIAM J. appl. math., 42, 5, 964-981, (1982) · Zbl 0502.76088
[36] Thompson, P.A.; Chaves, H.; Meier, G.E.A.; Kim, Y.-G.; Speckmann, H.-D., Wave splitting in a fluid of large heat capacity, J. fluid mech., 185, 385-414, (1987)
[37] Toro, E.F., Riemann solvers and numerical methods for fluid dynamics, (1997), Springer · Zbl 0888.76001
[38] Truskinovsky, L., Kinks versus shocks, () · Zbl 0818.76036
[39] Wood, A.B., A textbook of sound, (1930), The Macmillan Company New York, 327 · JFM 56.0717.07
[40] Wood, W.W.; Kirkwood, J.G., Diameter effect in condensed explosives: the relation between velocity and radius of curvature in the detonation wave, J. chem. phys., 22, 1920-1928, (1954)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.