zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Quantitative methods for ecological network analysis. (English) Zbl 1088.92061
Summary: The analysis of networks of ecological trophic transfers is a useful complement to simulation modeling in the quest for understanding whole-ecosystem dynamics. Trophic networks can be studied in a quantitative and systematic fashion at several levels. Indirect relationships between any two individual taxa in an ecosystem, which often differ in either nature or magnitude from their direct influences, can be assayed using techniques from linear algebra. The same mathematics can also be employed to ascertain where along the trophic continuum any individual taxon is operating, or to map the web of connections into a virtual linear chain that summarizes trophodynamic performance by the system. Backtracking algorithms with pruning have been written which identify pathways for the recycle of materials and energy within the system. The pattern of such cycling often reveals modes of control or types of functions exhibited by various groups of taxa. The performance of the system as a whole at processing material and energy can be quantified using information theory. In particular, the complexity of process interactions can be parsed into separate terms that distinguish organized, efficient performance from the capacity for further development and recovery from disturbance. Finally, the sensitivities of the information-theoretic system indices appear to identify the dynamical bottlenecks in ecosystem functioning.

94C99Circuits, networks
Full Text: DOI
[1] Abramson, N.: Information theory and coding. (1963)
[2] Allesina, S.; Bondavalli, C.: Steady state of ecosystem flow networks: a comparison between balancing procedures. Ecol. model. 165, 221-229 (2003)
[3] Allesina, S.; Bondavalli, C.: WAND: an ecological network analysis user-friendly tool. Environ. model. Software 19, No. 4, 337-340 (2004)
[4] Allesina, S., Bodini, A., Bondavalli, C., in review. Ecological subsystems via graph theory: the role of strongly connected components. Oikos.
[5] Allesina, S.; Ulanowicz, R. E.: Cycling in ecological networks: Finn’s index revisited. Computat. biol. Chem. 28, 227-233 (2004) · Zbl 1088.92052
[6] Atlan, H.: On a formal definition of organization. J. theor. Biol. 45, 295-304 (1974)
[7] Augustinovic, M.: Methods of international and intertemporal comparison of structure. Contributions to input -- output analysis (1970)
[8] Baird, D.; Ulanowicz, R. E.: The seasonal dynamics of the chesapeake bay ecosystem. Ecol. monogr. 59, 329-364 (1989)
[9] Baird, D.; Mcglade, J. M.; Ulanowicz, R. E.: The comparative ecology of six marine ecosystems. Philos. trans. R. soc. Lond. B 333, 15-29 (1991)
[10] Baird, D.; Christian, R. R.; Peterson, C. H.; Johnson, G. A.: Consequences of hypoxia on estuarine ecosystem function: energy diversion from consumers to microbes. Ecol. applic. 14, No. 3, 805-822 (2004)
[11] Bersier, L. -F.; Banašek-Richter, C.; Cattin, M. -F.: Quantitative descriptors of food web matrices. Ecology 83, 2394-2407 (2002)
[12] Blachman, N. M.: A generalization of mutual information. Proc. IRE 49, No. 8, 1331-1332 (1961)
[13] Bondavalli, C.; Ulanowicz, R. E.: Unexpected effects of predators upon their prey: the case of the American alligator. Ecosystems 2, 49-63 (1999)
[14] Christensen, V.; Pauly, D.: ECOPATH II --- a software for balancing steady-state models and calculating network characteristics. Ecol. model. 61, 169-185 (1992)
[15] Christian, R. R.; Luczkovich, J. J.: Organizing and understanding a winter’s seagrass foodweb network through effective trophic levels. Ecol. model. 117, 99-124 (1999)
[16] Christian, R.R., Dame, J.K., Johnson, G., Peterson, C.H., Baird, D., 2003. Monitoring and modeling of the Neuse River Estuary. Phase 2. Functional assessment of environmental phenomena through network analysis. UNC-WRRI 2003-343-E, Department of Biology, East Carolina University, Greenville, North Carolina, 111 pp.
[17] Cohen, J. E.; Briand, F.; Newman, C. M.: Community food webs: data and theory. Biomathematics 20. (1990) · Zbl 0719.92022
[18] Cousins, S.: Ecologists build pyramids again. New scientist 107, No. 1463, 50-54 (1985)
[19] Depew, D. J.; Weber, B. H.: Darwinism evolving: systems dynamics and the geneology of natural selection. (1994)
[20] Courant, R.: P108 in differential and integral calculus. 2 (1936) · Zbl 62.1165.04
[21] Fath, B. D.: Network analysis in perspective: comments on WAND: an ecological network analysis user-friendly tool. Environ. model. Software 19, 341-343 (2004)
[22] Fath, B. D.; Patten, B. C.: Network synergism: emergence of positive relations in ecological systems. Ecol. model. 107, 127-143 (1998)
[23] Fath, B. D.; Patten, B. C.: Review of the foundations of network environ analysis. Ecosystems 2, 167-179 (1999)
[24] Fath, B.D., Borrett, S.R., in review. A Matlab\textregistered  function for network environ analysis. Environ. Model. Software.
[25] Finn, J. T.: Measures of ecosystem structure and function derived from analysis of flows. J. theor. Biol. 56, 363-380 (1976)
[26] Fiscus, D. A.: The ecosystemic life hypothesisii. Four connected concepts. ESA bull. 83, 94-96 (2002)
[27] Han, B. -P.: On several measures concerning flow variables in ecosystems. Ecol. model. 104, 289-302 (1997)
[28] Hannon, B. M.: The structure of ecosystems. J. theor. Biol. 41, 535-546 (1973)
[29] Hannon, B. M.; Costanza, R.; Ulanowicz, R. E.: A general accounting framework for ecological systems: a functional taxonomy for connectivist ecology. Theor. popul. Biol. 40, 78-104 (1991) · Zbl 0729.92519
[30] Heymans, J.J., 2003. Comparing the Newfoundland -- Southern Labrador marine ecosystem models using information theory. In: Heymans, J.J. (Ed.), Ecosystem models of Newfoundland and Southeastern Labrador (2J3KLNO): Additional Information and Analyses for ”Back to the Future”, vol. 11 (5). Fisheries Centre Research Reports, pp. 62 -- 71.
[31] Higashi, M.; Burns, T. D.: Theoretical studies of ecosystems: the network perspective. (1991)
[32] Higashi, M.; Patten, B. C.; Burns, T. D.: Network trophic dynamics: an emerging paradigm in ecosystems ecology. Theoretical studies of ecosystems: the network perspective (1991)
[33] Hillebrand, H., Shurin, J.B, in press. Biodiversity and freshwater food webs. In: Belgrano, A., Scharler, U., Dunne, J., Ulanowicz, R.E. (Eds.), Aquatic Food Webs: An Ecosystem Approach. Oxford University Press, Oxford, Chapter 14.
[34] Holling, C. S.: The resilience of terrestrial ecosystems: local surprise and global change. Sustainable development of the biosphere, 292-317 (1986)
[35] Karr, J.R., Fausch, K.D., Angermeier, P.L., Yant, P.R., Schlosser, I.J., 1986. Assessment of Biological Integrity in Running Water: A Method and Its Rationale. Illinois Natural History Survey, Publication 5, Champaign, IL.
[36] Kauffman, S. A.: Antichaos and adaptation. Sci. am. 265, 78-84 (1991)
[37] Kavanagh, P.; Newlands, N.; Christensen, V.; Pauly, D.: Automated parameter optimization for ecopath ecosystem models. Ecol. model. 172, 141-149 (2004)
[38] Kikawada, H., 1998. Applying Network Analysis to Simulated Ecological Landscape Dynamics. Master’s Thesis, University of Maryland, College Park, MD, 181 pp.
[39] Knuth, D. E.: Fundamental algorithms. 1 (1973)
[40] Krivov, S.; Ulanowicz, R. E.: Quantitative measures of organization for multi-agent systems. Biosystems 69, 39-54 (2003)
[41] Kullback, S.: Information theory and statistics. (1959) · Zbl 0088.10406
[42] Latham, L. G.; Scully, E. P.: Quantifying constraint to assess development in ecological networks. Ecol. model. 154, 25-44 (2002)
[43] Leontief, W.: The structure of the American economy, 1919 -- 1939. (1951)
[44] Levine, S.: Several measures of trophic structure applicable to complex food webs. J. theor. Biol. 83, 195-207 (1980)
[45] Lorenz, E. N.: Deterministic nonperiodic flow. J. atmos. Sci. 20, 130-141 (1963)
[46] Macarthur, R.: Fluctuations of animal populations, and a measure of community stability. Ecology 36, 533-536 (1955)
[47] Mateti, P.; Deo, N.: On algorithms for enumerating all the circuits of a graph. SIAM J. Comput. 5, 90-99 (1976) · Zbl 0331.05115
[48] Matis, J. H.; Patten, B. C.; White, G. C.: Compartmental analysis of ecosystem models. (1979)
[49] Matis, J. H.; Patten, B. C.: Environ analysis of linear compartmental systems: the static, time invariant case. Bull. int. Stat. inst. 48, 527-565 (1981)
[50] May, R. M.: Will a large complex system be stable?. Nature 238, 413-414 (1972)
[51] Mueller, F., Leupelt, M. (Eds.), 1998. Eco Targets, Goal Functions and Orientors. Springer-Verlag, Berlin, 619 pp.
[52] Naess, A.: Deep ecology and ultimate premises. Ecologist 18, 128-131 (1988)
[53] NSF, 1999. Decision-making and Valuation for Environmental Policy. NSF Bulletin 99-14, National Science Foundation, Ballston, VA.
[54] Odum, E. P.: The strategy of ecosystem development. Science 164, 262-270 (1969)
[55] Odum, H. T.: Environment power and society. (1971)
[56] Pahl-Wostl, C.: The dynamic nature of ecosystems: chaos and order entwined. (1995)
[57] Patten, B. C.: Systems approach to the concept of environment. Ohio J. Sci. 78, 206-222 (1978)
[58] Patten, B. C.: On the quantitative dominance of indirect effects in ecosystems. Unpublished paper presented at the third international conference on state-of-the-art in ecological modeling (1982)
[59] Patten, B. C.: Environs: relativistic elementary particles for ecology. Am. nat. 119, 179-219 (1982)
[60] Patten, B. C.: Energy cycling in the ecosystem. Ecol. model. 28, 1-71 (1985)
[61] Patten, B. C.; Auble, G. T.: System theory of the ecological niche. Am. nat. 117, 893-922 (1981)
[62] Patten, B. C.; Bosserman, R. W.; Finn, J. T.; Cale, W. G.: Propagation of cause in ecosystems. Systems analysis and simulation in ecology 4 (1976)
[63] Pimm, S. L.: Food webs. (1982)
[64] Pimm, S. L.; Lawton, J. H.: Number of trophic levels in ecological communities. Nature 268, 329-331 (1977)
[65] Platt, T. C.; Mann, K. H.; Ulanowicz, R. E.: Mathematical models in biological oceanography. (1981)
[66] Polis, G.; Winemiller, K.: Food webs: integration of patterns and dynamics. (1995)
[67] Polovina, J. J.: An approach to estimating an ecosystem box model. US fish bull. 83, No. 3, 457-460 (1985)
[68] Rutledge, R. W.; Basorre, B. L.; Mulholland, R. J.: Ecological stability: an information theory viewpoint. J. theor. Biol. 57, 355-371 (1976)
[69] Sheffer, M.; Beets, J.: Ecological models and the pitfalls of causality. Hydrobiologia 275 -- 276, 115-124 (1994)
[70] Simon, H. A.; Hawkins, D.: Some conditions of macroeconomic stability. Econometrica 17, 245-248 (1949) · Zbl 0036.10001
[71] Szyrmer, J.; Ulanowicz, R. E.: Total flows in ecosystems. Ecol. model. 35, 123-136 (1987)
[72] Tarjan, R.: Depth first search and linear graph algorithms. SIAM J. Comput. 1, 146-160 (1972) · Zbl 0251.05107
[73] Tilly, L. J.: The structure and dynamics of cone spring. Ecol. monogr. 38, 169-197 (1968)
[74] Tribus, M.; Mcirvine, E. C.: Energy and information. Sci. am. 225, 179-188 (1971)
[75] Ulanowicz, R. E.: Prediction chaos and ecological perspective. Theoretical systems ecology, 107-117 (1979)
[76] Ulanowicz, R. E.: An hypothesis on the development of natural communities. J. theor. Biol. 85, 223-245 (1980)
[77] Ulanowicz, R. E.: Identifying the structure of cycling in ecosystems. Math. biosci. 65, 219-237 (1983) · Zbl 0516.92024
[78] Ulanowicz, R. E.: Community measures of marine food networks and their possible applications. Flows of energy and materials in marine ecosystems, 23-47 (1984)
[79] Ulanowicz, R. E.: Growth and development: ecosystems phenomenology. (1986) · Zbl 0599.92022
[80] Ulanowicz, R. E.: Ecosystem trophic foundations: lindeman exonerata. Complex ecology: the part -- whole relation in ecosystems, 549-560 (1995)
[81] Ulanowicz, R. E.: Ecology, the ascendent perspective. (1997)
[82] Ulanowicz, R. E.: Life after Newton: an ecological metaphysic. Biosystems 50, 127-142 (1999)
[83] Ulanowicz, R. E.: Toward the measurement of ecological integrity. Ecological integrity: integrating environment, conservation and health, 99-113 (2000)
[84] Ulanowicz, R. E.: Quantifying constraints upon trophic and migratory transfers in spatially heterogeneous ecosystems. Series in landscape ecology: A top -- down approach, 113-142 (2000)
[85] Ulanowicz, R. E.: The balance between adaptability and adaptation. Biosystems 64, 13-22 (2002)
[86] Ulanowicz, R. E.; Abarca-Arenas, L. G.: An informational synthesis of ecosystem structure and function. Ecol. model. 95, 1-10 (1997)
[87] Ulanowicz, R. E.; Baird, D.: Nutrient controls on ecosystem dynamics: the chesapeake mesohaline community. J. mar. Syst. 19, 159-172 (1999)
[88] Ulanowicz, R.E., Bondavalli, C., Egnotovich, M.S., 1997. Section 4.1 of Network Analysis of Trophic Dynamics in South Florida Ecosystems, FY 96: The Cypress Wetland Ecosystem. Ref. No. [UMCES]CBL 97-075, Chesapeake Biological Laboratory, Solomons, MD.
[89] Ulanowicz, R. E.; Kemp, W. M.: Toward canonical trophic aggregations. Am. nat. 114, 871-883 (1979)
[90] Ulanowicz, R. E.; Norden, J. S.: Symmetrical overhead in flow networks. Int. J. Syst. sci. 1, 429-437 (1990) · Zbl 0693.90036
[91] Ulanowicz, R. E.; Puccia, C. J.: Mixed trophic impacts in ecosystems. Coenoses 5, 7-16 (1990)
[92] Ulanowicz, R.E., Scharler, U.M., in preparation. Least-inference methods for constructing networks of trophic flows.
[93] Ulanowicz, R. E.; Wolff, W. F.: Ecosystem flow networks: loaded dice?. Math. biosci. 103, 45-68 (1991) · Zbl 0714.92023
[94] Ulanowicz, R.E., Zickel, M.J., in press. Using ecology to quantify fluid flows. In: Kleidon, A.M., Lorenz, R.D. (Eds.), Thermodynamics of Life, Earth, and Beyond: Systems, Feedbacks, Organization and Evolution. Springer, Berlin, pp. 57 -- 66.
[95] Vezina, A. F.; Platt, T. C.: Food web dynamics in the oceani. Best-estimates of flow networks using inverse methods. Mar. ecol. Prog. ser. 42, 269-287 (1988)
[96] Von Liebig, J.: Chemistry in its application to agriculture and physiology. (1854)
[97] Wagensberg, J.; Garcia, A.; Sole, R. V.: Connectivity and information transfer in flow networks: two magic numbers in ecology?. Bull. math. Biol. 52, 733-740 (1990)
[98] Whipple, S. J.; Patten, B. C.: The problem of nontrophic processes in trophic ecology: a network unfolding solution. J. theor. Biol. 163, 393-411 (1993)
[99] Woodwell, G.M., Smith, H.H. (Eds.), 1969. Diversity and Stability in Ecological Systems, vol. 22. US Brookhaven Symp. Biol., New York, 264 pp.
[100] Wulff, F.; Ulanowicz, R. E.: A comparative anatomy of the baltic sea and chesapeake bay ecosystems. Flow analysis of marine ecosystem, 232-256 (1989)
[101] Wulff, F.; Field, J. G.; Mann, K. H.: Flow analysis of marine ecosystem. (1989)
[102] Yodzis, P.: Patterns in food webs. Trends ecol. Evol. 4, No. 2, 49-50 (1989)
[103] Zorach, A. C.; Ulanowicz, R. E.: Quantifying the complexity of flow networks: how many roles are there?. Complexity 8, No. 3, 68-76 (2003)