zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Exclusion and persistence in deterministic and stochastic chemostat models. (English) Zbl 1089.34041
The authors first introduce and discuss a variant of the standard deterministic chemostat model. The principal difference is that microbe removal and growth rates depend on the biomass concentration with removal terms increasing faster than growth terms. In the single species scenario, they turn out that the qualitative behavior is virtually indistinguishable from the standard chemostat model. In the multiple species scenario, by using a comparison principle, they prove that persistence of all species is possible. Then, the authors turn to modelling the influence of random fluctuations by setting up and analyzing a stochastic differential equation. In the single species case, they show that if the deterministic counterpart admits persistence, and the stochastic effects are not too strong, then there are a recurrent system and, with some additional assumptions, the stochastic solution can be expected to remain close to the interior deterministic stationary point. In the two species case, they prove a transient result and show that under certain conditions, the stochastic model leads to extinction even though the deterministic counterpart predicts persistence.

34D05Asymptotic stability of ODE
34F05ODE with randomness
34C60Qualitative investigation and simulation of models (ODE)
92D25Population dynamics (general)
Full Text: DOI
[1] Aris, R.; Humphrey, A. E.: Dynamics of a chemostat in which two organisms compete for a common substrate. Biotech. bioenginng. 19, 1375-1386 (1977)
[2] Beddington, J. R.; May, R. M.: Harvesting natural populations in a randomly fluctuating environment. Science 197, 463-465 (1977)
[3] Bhattacharya, R. N.: Criteria for recurrence and existence of invariant measures for multidimensional diffusions. Ann. probab. 6, 541-553 (1978) · Zbl 0386.60056
[4] J. Braun, Doctoral dissertation, Universität Tübingen, 2003.
[5] Butler, G. J.; Wolkowicz, G. S. K.: A mathematical model of the chemostat with a general class of functions describing nutrient uptake. SIAM J. Appl. math. 45, 138-151 (1985) · Zbl 0569.92020
[6] Contois, D. E.: Kinetics of bacterial growth: relationship between population density and specific growth rate of continuous cultures. J. gen. Microbiol. 21, 40-50 (1959)
[7] Durrett, R.: Stochastic calculus. (1996) · Zbl 0856.60002
[8] Ellermeyer, S. F.: Competition in the chemostat: global asymptotic behavior of a model with delayed response in growth. SIAM J. Appl. math. 54, 456-465 (1994) · Zbl 0794.92023
[9] Ellermeyer, S. F.; Pilyugin, S. S.; Redheffer, R.: Persistence criteria for a chemostat with variable nutrient input. J. differential equations 171, 132-147 (2001) · Zbl 0983.34039
[10] Corrigendum, Theoret. Popul. Biol. 51 (1997) 77 -- 78.
[11] Fredrickson, A. G.; Stephanopoulos, G.: Microbial competition. Science 213, 972-979 (1981) · Zbl 1225.92054
[12] Friedman, A.: Stochastic differential equations and applications. 1 (1975) · Zbl 0323.60056
[13] Fudenberg, D.; Harris, C.: Evolutionary dynamics with aggregate shocks. J. econom. Theory 57, 420-441 (1992) · Zbl 0766.92012
[14] Gard, T. C.: Asymptotic and transient analysis of stochastic core ecosystem models. Electron. J. Differential equations, conf. 3, 51-62 (1999) · Zbl 1056.92524
[15] Gard, T. C.: A new Liapunov function for the simple chemostat. Nonlinear anal. Real world appl. 3, 211-226 (2002) · Zbl 1007.92034
[16] Gouze, J. -L.; Hadeler, K. P.: Monotone flows and order intervals. Nonlinear world 1, 23-34 (1994) · Zbl 0803.65076
[17] Hansen, S. R.; Hubbell, S. P.: Single nutrient microbial competition: agreement between experimental and theoretical forecast outcomes. Science 207, 1491-1493 (1980)
[18] Herbert, D.; Elsworth, R.; Telling, R. C.: The continuous culture of bacteria: a theoretical and experimental study. J. gen. Microbiol. 14, 601-622 (1956)
[19] Hsu, S. B.: Limiting behavior for competing species. SIAM J. Appl. math. 34, 760-763 (1978) · Zbl 0381.92014
[20] Hsu, S. B.; Hubbell, S. P.; Waltman, P.: Competing predators. SIAM J. Appl. math. 32, 366-383 (1977) · Zbl 0394.92025
[21] Ikeda, N.; Watanabe, S.: A comparison theorem for solutions of stochastic differential equations and its applications. Osaka J. Math. 14, 619-633 (1977) · Zbl 0376.60065
[22] Imhof, L.: The long-run behavior of the stochastic replicator dynamics. Ann. appl. Probab. 15, 1019-1045 (2005) · Zbl 1081.60045
[23] Karatzas, I.; Shreve, S. E.: Brownian motion and stochastic calculus. (1991) · Zbl 0734.60060
[24] Kirkilionis, M.; Walcher, S.: On comparison systems for ordinary differential equations. J. math. Anal. appl. 299, 157-173 (2004) · Zbl 1080.34018
[25] Kushner, H. J.: Stochastic stability and control. (1967) · Zbl 0244.93065
[26] Li, B.: Global asymptotic behavior of the chemostat: general response functions and different removal rates. SIAM J. Appl. math. 59, 411-422 (1998) · Zbl 0916.92025
[27] Mcgehee, R.; Armstrong, R. A.: Some mathematical problems concerning the ecological principle of competitive exclusion. J. differential equations 23, 30-52 (1977) · Zbl 0353.92007
[28] Monod, J.: Recherches sur la croissance des cultures bacteriennes. (1942) · Zbl 0063.04097
[29] Monod, J.: La technique de culture continue. Theorie et applications. Ann. inst. Pasteur 79, 390-410 (1950)
[30] Novick, A.; Szilard, L.: Experiments with the chemostat on spontaneous mutations of bacteria. Proc. nat. Acad. sci. 36, 708-719 (1950)
[31] Smith, H. L.; Waltman, P.: The theory of the chemostat. (1995) · Zbl 0860.92031
[32] Stephanopoulos, G.; Aris, R.; Fredrickson, A. G.: A stochastic analysis of the growth of competing microbial populations in a continuous biochemical reactor. Math. biosci. 45, 99-135 (1979) · Zbl 0449.92018
[33] Thieme, H.: Convergence results and a Poincarè -- Bendixson trichotomy for asymptotically autonomous differential equations. J. math. Biol. 30, 755-763 (1992) · Zbl 0761.34039
[34] Wolkowicz, G. S. K.; Xia, H.; Ruan, S.: Competition in the chemostat: a distributed delay model and its global asymptotic behavior. SIAM J. Appl. math. 57, 1281-1310 (1997) · Zbl 0893.34067
[35] Wu, J.; Wolkowicz, G. S. K.: A system of resource-based growth models with two resources in the unstirred chemostat. J. differential equations 172, 300-332 (2001) · Zbl 1001.80007