zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Exact solutions to the double sinh-Gordon equation by the tanh method and a variable separated ODE method. (English) Zbl 1089.35534
Summary: New exact travelling wave solutions for the double sinh-Gordon equation and its generalized form are formally derived by using the tanh method and the variable separated ODE method. The Painlevé property $v = e^{u}$ is employed to support the tanh method in deriving exact solutions. The work emphasizes the power of the methods in providing distinct solutions of different physical structures.

35Q53KdV-like (Korteweg-de Vries) equations
35K40Systems of second-order parabolic equations, general
35C05Solutions of PDE in closed form
Full Text: DOI
[1] Sirendaoreji; Jiong, S.: A direct method for solving sinh-Gordon type equation. Phys. lett. A 298, 133-139 (2002) · Zbl 0995.35056
[2] Fu, Z.; Liu, S.; Liu, S.: Exact solutions to double and triple sinh-Gordon equations. Z. naturforsch. 59a, 933-937 (2004)
[3] Perring, J. K.; Skyrme, T. H.: A model unified field equation. Nucl. phys. 31, 550-555 (1962) · Zbl 0106.20105
[4] Whitham, G. B.: Linear and nonlinear waves. (1999) · Zbl 0940.76002
[5] Infeld, E.; Rowlands, G.: Nonlinear waves, solitons and chaos. (2000) · Zbl 0994.76001
[6] Polyanin, A.; Zaitsev, V. F.: Handbook of nonlinear partial differential equations. (2004) · Zbl 1053.35001
[7] Ablowitz, M. J.; Herbst, B. M.; Schober, C.: On the numerical solution of the sinh-Gordon equation. Journal of computational physics 126, 299-314 (1996) · Zbl 0866.65064
[8] Wei, G. W.: Discrete singular convolution for the sinh-Gordon equation. Physica D 137, 247-259 (2000) · Zbl 0944.35087
[9] Malfliet, W.: Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 60, No. 7, 650-654 (1992) · Zbl 1219.35246
[10] W. Malfliet, The tanh method: I. Exact solutions of nonlinear evolution and wave equations, Physica Scripta 54, 563--568. · Zbl 0942.35034
[11] W. Malfliet, The tanh method: II. Perturbation technique for conservative systems, Physica Scripta 54, 569--575. · Zbl 0942.35035
[12] A.M. Wazwaz, The tanh method: Exact solutions of the sinh-Gordon and the Sinh-Gordon equations, Appl. Math. Comput. (to appear). · Zbl 1082.65585
[13] Wazwaz, A. M.: The tanh method for travelling wave solutions of nonlinear equations. Appl. math. Comput. 154, No. 3, 713-723 (2004) · Zbl 1054.65106
[14] Wazwaz, A. M.: Partial differential equations: methods and applications. (2002) · Zbl 1079.35001
[15] A.M. Wazwaz, The variable separated ODE and the tanh methods for solving the combined and the double combined sinh-cosh-Gordon equations, Appl. Math. Comput. (to appear). · Zbl 1096.65104
[16] A.M. Wazwaz, Travelling wave solutions for combined and double combined sine-cosine-Gordon equations, Appl. Math. Comput. (to appear). · Zbl 1099.65095