Dinh, Tien-Cuong; Sibony, Nessim Geometry of currents, intersection theory and dynamics of horizontal-like maps. (English) Zbl 1089.37036 Ann. Inst. Fourier 56, No. 2, 423-457 (2006). Summary: We introduce a geometry on the cone of positive closed currents of bidegree \((p,p)\) and apply it to define the intersection of such currents. We also construct and study the Green currents and the equilibrium measure for horizontal-like mappings. The Green currents satisfy some extremality properties. The equilibrium measure is invariant, mixing and has maximal entropy. It is equal to the intersection of the Green currents associated to the horizontal-like map and to its inverse. Cited in 1 ReviewCited in 16 Documents MSC: 37F10 Dynamics of complex polynomials, rational maps, entire and meromorphic functions; Fatou and Julia sets 32H50 Iteration of holomorphic maps, fixed points of holomorphic maps and related problems for several complex variables 32U40 Currents 37B40 Topological entropy 37B05 Dynamical systems involving transformations and group actions with special properties (minimality, distality, proximality, expansivity, etc.) Keywords:topological entropy; intersection of currents; Green currents; equilibrium measure; horizontal-like mappings; extremality properties; mixing PDF BibTeX XML Cite \textit{T.-C. Dinh} and \textit{N. Sibony}, Ann. Inst. Fourier 56, No. 2, 423--457 (2006; Zbl 1089.37036) Full Text: DOI arXiv Numdam EuDML OpenURL References: [1] Bedford, E.; Lyubich, M.; Smillie, J., Polynomial diffeomorphisms of \(\mathbb{C}^2,\) V: the measure of maximal entropy and laminar currents, Invent. Math., 112, 1, 77-125, (1993) · Zbl 0792.58034 [2] Bedford, E.; Smillie, J., Polynomial diffeomorphisms of \(\mathbb{C}^2,\) III: ergodicity, exponents and entropy of the equilibrium measure, Math. Ann., 294, 395-420, (1992) · Zbl 0765.58013 [3] Demailly, J. P., Monge-Ampère operators, Lelong numbers and intersection theory in complex analysis and geometry, Plemum Press, 115-193, (1993) · Zbl 0792.32006 [4] Dinh, T. C., Decay of correlations for Hénon maps [5] Dinh, T. C.; Dujardin, R.; Sibony, N., On the dynamics near infinity of some polynomial mappings in \(\mathbb{C}^2,\) Math. Ann., 333, 4, 703-739, (2005) · Zbl 1079.37040 [6] Dinh, T. C.; Sibony, N., Dynamique des applications d’allure polynomiale, J. Math. Pures Appl., 82, 367-423, (2003) · Zbl 1033.37023 [7] Dinh, T. C.; Sibony, N., Regularization of currents and entropy, Ann. Sci. Ecole Norm. Sup., 37, 959-971, (2004) · Zbl 1074.53058 [8] Dinh, T. C.; Sibony, N., Dynamics of regular birational maps in \(\mathbb{P}^k,\) J. Funct. Anal., 222, 1, 202-216, (2005) · Zbl 1067.37055 [9] Dinh, T. C.; Sibony, N., Green currents for holomorphic automorphisms of compact Kähler manifolds, J. Amer. Math. Soc., 18, 2, 291-312, (2005) · Zbl 1066.32024 [10] Dinh, T. C.; Sibony, N., Une borne supérieure pour l’entropie topologique d’une application rationnelle, Ann. of Math., 161, 1637-1644, (2005) · Zbl 1084.54013 [11] Dujardin, R., Hénon-like mappings in \(\mathbb{C}^2,\) Amer. J. Math., 126, 439-472, (2004) · Zbl 1064.37035 [12] Duval, J.; Sibony, N., Polynomial convexity, rational convexity, and currents, Duke Math. J., 79, 2, 487-513, (1995) · Zbl 0838.32006 [13] Federer, H., Geometric Measure Theory, (1969), Springer Verlag, New York · Zbl 0176.00801 [14] Fornæss, J. E.; Sibony, N., Complex Hénon mappings in \(\mathbb{C}^2\) and Fatou-Bieberbach domains, Duke Math. J., 65, 345-380, (1992) · Zbl 0761.32015 [15] Fornæss, J. E.; Sibony, N., Oka’s inequality for currents and applications, Math. Ann., 301, 399-419, (1995) · Zbl 0832.32010 [16] Gromov, M., On the entropy of holomorphic maps, Enseignement Math., 49, 217-235, (2003) · Zbl 1080.37051 [17] Harvey, R.; Polking, J., Extending analytic objects, Comm. Pure Appl. Math., 28, 701-727, (1975) · Zbl 0323.32013 [18] Harvey, R.; Shiffman, B., A characterization of holomorphic chains, Ann. of Math. (2), 99, 553-587, (1974) · Zbl 0287.32008 [19] Hörmander, L., The analysis of Linear partial differential operators I, (1983), Springer-Verlag · Zbl 0521.35001 [20] Katok, A.; Hasselblatt, B., Introduction to the modern theory of dynamical systems, 54, (1995), Cambridge Univ. Press. · Zbl 0878.58020 [21] Lelong, P., Fonctions plurisousharmoniques et formes différentielles positives, (1968), Dunod, Paris · Zbl 0195.11603 [22] Sibony, N., Dynamique des applications rationnelles de \(\mathbb{P}^k,\) Panoramas et Synthèses, 8, 97-185, (1999) · Zbl 1020.37026 [23] Smillie, J., The entropy of polynomial diffeomorphisms of \(\mathbb{C}^2,\) Ergodic Theory & Dynamical Systems, 10, 823-827, (1990) · Zbl 0695.58023 [24] Walters, P., An introduction to ergodic theory, (1982), Springer, Berlin-Heidelberg-New York · Zbl 0475.28009 [25] Yomdin, Y., Volume growth and entropy, Israel J. Math., 57, 285-300, (1987) · Zbl 0641.54036 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.