zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Iterated He’s homotopy perturbation method for quadratic Riccati differential equation. (English) Zbl 1089.65072
Summary: The iterated homotopy perturbation method of {\it J. He} [Int. J. Non-Linear Mech. 35, No. 1, 37--43 (2000; Zbl 1068.74618)] is proposed to solving a quadratic Riccati differential equation. Comparisons are made between Adomian’s decomposition method, the exact solution, and the proposed method. The results reveal that the method is very effective and simple.

65L10Boundary value problems for ODE (numerical methods)
34B15Nonlinear boundary value problems for ODE
Full Text: DOI
[1] Adomian, G.: Solving frontier problems of physics: the decomposition method. (1994) · Zbl 0802.65122
[2] Adomian, G.; Rach, R.: On the solution of algebraic equations by the decomposition method. Math. anal. Appl. 105, 141-166 (1985) · Zbl 0552.60060
[3] El-Shahed, M.: Application of he’s homotopy perturbation method to Volterra’s integro-differential equation. Int. J. Nonlinear sci. Numer. simul. 6, No. 2, 163-168 (2005)
[4] El-Tawil, M. A.; Bahnasawi, A. A.; Abdel-Naby, A.: Solving Riccati differential equation using Adomian’s decomposition method. Appl. math. Comput. 157, 503-514 (2004) · Zbl 1054.65071
[5] Hillermeier, C.: Generalized homotopy approach to multiobjective optimization. Int. J. Optim. theory appl. 110, No. 3, 557-583 (2001) · Zbl 1064.90041
[6] He, J. H.: Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. methods appl. Mech. eng. 167, No. 1-2, 57-68 (1998) · Zbl 0942.76077
[7] He, J. H.: Approximate solution of nonlinear differential equations with convolution product nonlinearities. Comput. methods appl. Mech. eng. 167, No. 1-2, 69-73 (1998) · Zbl 0932.65143
[8] He, J. H.: An approximate solution technique depending upon an artificial parameter. Commun. nonlinear sci. Simulat. 3, No. 2, 92-97 (1998) · Zbl 0921.35009
[9] He, J. H.: Variational iteration method: a kind of nonlinear analytical technique: some examples. Int. J. Non-linear mech. 34, No. 4, 699-708 (1999) · Zbl 05137891
[10] He, J. H.: Homotopy perturbation technique. Comput. methods appl. Mech. eng. 178, No. 3/4, 257-262 (1999) · Zbl 0956.70017
[11] He, J. H.: A coupling method of homotopy technique and perturbation technique for nonlinear problems. Int. J. Nonlinear mech. 35, No. 1, 37-43 (2000) · Zbl 1068.74618
[12] He, J. H.: A review on some new recently developed nonlinear analytical techniques. Int. J. Nonlinear sci. Numer. simul. 1, No. 1, 51-70 (2000) · Zbl 0966.65056
[13] He, J. H.: Variational iteration method for autonomous ordinary differential systems. Appl. math. Comput. 114, No. 2-3, 115-123 (2000) · Zbl 1027.34009
[14] He, J. H.: Bookkeeping parameter in perturbation methods. Int. J. Nonlinear sci. Numer. simul. 2, No. 3, 257-264 (2001) · Zbl 1072.34508
[15] He, J. H.: Modified lindsted-Poincarè methods for some strongly nonlinear oscillations, part III: Double series expansion. Int. J. Nonlinear sci. Numer. simul. 2, No. 4, 317-320 (2001) · Zbl 1072.34507
[16] He, J. H.: Modified Lindstedt-Poincarè methods for some strongly non-linear oscillations, part I: Expansion of a constant. Int. J. Nonlinear mech. 37, No. 2, 309-314 (2002) · Zbl 1116.34320
[17] He, J. H.: Modified Lindstedt-Poincarè methods for some strongly non-linear oscillations, part II: a new transformation. Int. J. Nonlinear mech. 37, No. 2, 315-320 (2002) · Zbl 1116.34321
[18] He, J. H.: The homotopy perturbation method for nonlinear oscillators with discontinuities. Appl. math. Comput. 151, 287-292 (2004) · Zbl 1039.65052
[19] He, J. H.: Comparison of homotopy perturbtion method and homotopy analysis method. Appl. math. Comput. 156, 527-539 (2004) · Zbl 1062.65074
[20] He, J. H.: Asymptotology by homotopy perturbtion method. Appl. math. Comput. 156, 591-596 (2004) · Zbl 1061.65040
[21] He, J. H.: Homotopy perturbation method for bifurcation of nonlinear problems. Int. J. Nonlinear sci. Numer. simul. 6, No. 2, 207-208 (2005)
[22] He, J. H.; Wan, Y. Q.; Guo, Q.: An iteration formulation for normalized diode characteristics. Int. J. Circ. theor. Appl. 32, No. 6, 629-632 (2004) · Zbl 1169.94352
[23] Liu, H. M.: Approximate period of nonlinear oscillators with discontinuities by modified Lindstedt-Poincarè method. Chaos, solitons & fractals 23, No. 2, 577-579 (2005) · Zbl 1078.34509
[24] Nayfeh, A. H.: Problems in perturbation. (1985) · Zbl 0573.34001
[25] Wang, Q.; Chen, Y.; Zhang, H. Q.: A new Riccati equation rational expansion method and its application to (2+1)-dimensional Burgers equation. Chaos, solitons & fractals 25, No. 5, 1019-1028 (2005) · Zbl 1070.35073
[26] Xie, F.; Gao, X.: Exact travelling wave solutions for a class of nonlinear partial differential equations. Chaos, solitons & fractals 19, No. 5, 1113-1117 (2004) · Zbl 1068.35146