zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A high-order Padé ADI method for unsteady convection-diffusion equations. (English) Zbl 1089.65092
Summary: A high-order alternating direction implicit (ADI) method for computations of unsteady convection-diffusion equations is proposed. By using fourth-order Padé schemes for the spatial derivatives, the present scheme is fourth-order accurate in space and second-order accurate in time. The solution procedure consists of a number of tridiagonal matrix operations which make the computation cost effective. The method is unconditionally stable, and shows higher accuracy and better phase and amplitude error characteristics than the standard second-order ADI method by {\it D. W. Peaceman} and {\it H. H. Rachford jun.} [J. Soc. Ind. Appl. Math. 3, 28--41 (1955; Zbl 0067.35801)] and the fourth-order ADI scheme of {\it S. Karaa} and {\it J. Zhang} [J. Comput. Phys. 198, 1--9 (2004; Zbl 1053.65067)].

65M06Finite difference methods (IVP of PDE)
Full Text: DOI
[1] Peaceman, D. W.; Jr., H. H. Rachford: The numerical solution of parabolic and elliptic differential equations. Journal of the society of industrial and applied mathematics 3, 28-41 (1959) · Zbl 0067.35801
[2] Karaa, S.; Zhang, J.: High order ADI method for solving unsteady convection-diffusion problems. Journal of computational physics 198, 1-9 (2004) · Zbl 1053.65067
[3] Kalita, J. C.; Dalal, D. C.; Dass, A. K.: A class of higher order compact schemes for the unsteady two-dimensional convection-diffusion equation with variable convection coefficients. International journal for numerical methods in fluids 38, 1111-1131 (2002) · Zbl 1094.76546
[4] Spotz, W. F.; Carey, G. F.: Extension of high-order compact schemes to time-dependent problems. Numerical methods for partial differential equations 17, 657-672 (2001) · Zbl 0998.65101
[5] Rigal, A.: High order difference schemes for unsteady one-dimensional diffusion-convection problems. Journal of computational physics 114, 59-76 (1994) · Zbl 0807.65096
[6] Noye, B. J.; Tan, H. H.: Finite difference methods for solving the two-dimensional advection-diffusion equation. International journal for numerical methods in fluids 26, 1615-1629 (1988) · Zbl 0638.76104
[7] Van Der Houwen, P. J.; De Vries, H. B.: Fourth order ADI method for semidiscrete parabolic equations. Journal of computational and applied mathematics 9, No. 1, 41-63 (1983) · Zbl 0513.65051
[8] De Vries, H. B.: Comparative study of ADI splitting methods for parabolic equations in two space dimensions. Journal of computational and applied mathematics 10, No. 2, 179-193 (1984) · Zbl 0574.65132
[9] Van Der Houwen, P. J.: Iterated splitting methods of high order for time-dependent partial differential equations. SIAM journal on numerical analysis 21, No. 4, 635-656 (1984) · Zbl 0566.65054
[10] Mackinnon, R. J.; Carey, G. F.: Analysis of material interface discontinuities and superconvergent fluxes in finite difference theory. Journal of computational physics 75, 151-167 (1988) · Zbl 0632.76110
[11] H. Choi, P. Moin, J. Kim, Turbulent drag reduction: studies of feedback control and flow over riblets, Report TF-55, Department of Mechanical Engineering, Stanford University, Stanford, California, September 1992.
[12] K. Akselvoll, P. Moin, Large eddy simulation of turbulent confined coannular jets and turbulent flow over a backward facing step, Report TF-63, Department of Mechanical Engineering, Stanford University, Stanford, California, February 1995.
[13] You, D.; Mittal, R.; Wang, M.; Moin, P.: Computational methodology for large-eddy simulation of tip-clearance flows. AIAA journal 42, No. 2, 271-279 (2004)
[14] Visbal, M. R.; Gaitonde, D. V.: High-order-accurate methods for complex unsteady subsonic flows. AIAA journal 37, No. 10, 1231-1239 (1999)
[15] Mittal, R.; Moin, P.: Suitability of upwind-biased schemes for large-eddy simulation of turbulent flows. AIAA journal 36, 1415-1417 (1997) · Zbl 0900.76336
[16] Moin, P.: Fundamentals of engineering numerical analysis. (2001) · Zbl 0993.65003
[17] Hundsdorfer, W. H.; Verwer, J. G.: Stability and convergence of the peaceman-Rachford ADI method for initial-boundary value problems. Mathematics of computation 53, No. 187, 81-101 (1989) · Zbl 0689.65064
[18] Mattsson, K.; Nordström, J.: Summation by parts operators for finite difference approximations of second derivatives. Journal of computational physics 199, 503-540 (2004) · Zbl 1071.65025
[19] Carpenter, M. H.; Gottlieb, D.; Abarbanel, S.: Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes. Journal of computational physics 111, 220-236 (1994) · Zbl 0832.65098
[20] K. Mattsson, Private communication, 2005.
[21] Strand, B.: Summation by parts for finite difference approximations for d/dx. Journal of computational physics 110, 47-67 (1994) · Zbl 0792.65011
[22] Carpenter, M. H.; Nordström, J.; Gottlieb, D.: A stable conservative interface treatment of arbitrary spatial accuracy. Journal of computational physics 148, 341-365 (1999) · Zbl 0921.65059
[23] Kim, J.; Moin, P.: Application of a fractional-step method to incompressible Navier-Stokes equations. Journal of computational physics 59, 308-323 (1985) · Zbl 0582.76038