zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The SIRC model and influenza A. (English) Zbl 1089.92043
Summary: We develop a simple ordinary differential equations model to study the epidemiological consequences of the drift mechanism for influenza A viruses. Improving over the classical SIR approach, we introduce a fourth class ($C$) for the cross-immune individuals in the population, i.e., those that recovered after being infected by different strains of the same viral subtype in the past years. The SIRC model predicts that the prevalence of a virus is maximum for an intermediate value of $R_{0}$, the basic reproduction number. Via a bifurcation analysis of the model, we discuss the effect of seasonality on the epidemiological regimes. For realistic parameter values, the model exhibits a rich variety of behaviors, including chaos and multi-stable periodic outbreaks. Comparison with empirical evidence shows that the simulated regimes are qualitatively and quantitatively consistent with reality, both for tropical and temperate countries. We find that the basins of attraction of coexisting cycles can be fractal sets, thus predictability can in some cases become problematic even theoretically. In accordance with previous studies, we find that increasing cross-immunity tends to complicate the dynamics of the system.

92C60Medical epidemiology
34C23Bifurcation (ODE)
37N25Dynamical systems in biology
Full Text: DOI
[1] Klimov, A.; Simonsen, L.; Fukuda, K.; Cox, N.: Surveillance and impact of influenza in the united states. Vaccine 17, S42 (1999)
[2] Cox, N.; Subbarao, K.: Global epidemiology of influenza. Ann. rev. Med. 51, 407 (2000)
[3] Simonsen, L.; Clarke, M.; Schonberg, L.; Arden, N.; Cox, N.; Fukuda, K.: Pandemic versus epidemic influenza mortality: a pattern of changing age distribution. J. infect. Diseases 178, 53 (1998)
[4] Simonsen, L.; Clarke, M.; Williamson, G.; Stroup, D.; Schonberger, L.: The impact of influenza epidemics on mortality: introducing a severity index. Am. J. Public health 87, 1944 (1997)
[5] Palese, P.; Young, J.: Variation of influenza A, B, and C viruses. Science 215, 1468 (1982)
[6] Webster, R.; Bean, W.; Gorman, O.; Chambers, T.; Kawaoka, Y.: Evolution and ecology of influenza A viruses. Microbiol. rev. 56, 152 (1992)
[7] Webster, R.; Laver, W.; Air, G.; Schild, G.: Molecular mechanisms of variation in influenza viruses. Nature 296, 115 (1982)
[8] Larson, H.; Tyrrell, D.; Bowker, C.; Potter, C.; Schild, G.: Immunity to challenge in volunteers vaccinated with an inactivated current or earlier strain of influenza $A(H3N2)$. J. hyg. (Cambridge) 80, 243 (1978)
[9] Davies, J.; Grilli, E.; Smith, A.: Influenza A: infection and reinfection. J. hyg. (Cambridge) 92, 125 (1984)
[10] Levine, A.: Viruses. (1992)
[11] Earn, D.; Dushoff, J.; Levin, S.: Ecology and evolution of the flu. Trends ecol. Evol. 17, 334 (2002)
[12] Andreasen, V.; Lin, J.; Levin, S.: The dynamics of cocirculating influenza strains conferring partial cross-immunity. J. math. Biol. 35, 825 (1997) · Zbl 0874.92023
[13] Lin, J.; Andreasen, V.; Levin, S.: Dynamics of influenza A drift: the linear three-strain model. Math. biosci. 162, 33 (1999) · Zbl 0947.92017
[14] Lin, J.; Andreasen, V.; Casagrandi, R.; Levin, S.: Traveling waves in a model of influenza A drift. J. theoret. Biol. 222, 437 (2003)
[15] Cisternas, J.; Gear, W.; Levin, S.; Kevrekidis, I. G.: Equation-free modelling of evolving diseases: coarse-grained computations with individual based models. Proc. roy. Soc.: math. Phys. eng. Sci. 460, 2761 (2004) · Zbl 1063.92046
[16] Gog, J.; Grenfell, B.: Dynamics and selection of many-strain pathogens. Proc. nat. Acad. sci. USA 99, 17209 (2002)
[17] Pease, C.: An evolutionary epidemiological mechanism, with applications to type A influenza. Theoret. populat. Biol. 31, 422 (1987) · Zbl 0614.92012
[18] Gill, P.; Murphy, A.: Naturally acquired immunity to influenza type A: a further prospective study. Med. J. Austr. 2, 761 (1977)
[19] Potter, C.; Jennings, R.; Nicholson, K.; Tyrrel, D.; Dickinson, K.: Immunity to attenuated influenza virus WRL 105 infection induced by heterologous inactivated influenza A virus vaccines. J. hyg. (Cambridge) 79, 321 (1977)
[20] Smith, D.; Lapedes, A.; De Jong, J.; Bestebroer, T.; Rimmelzwaan, G.; Osterhaus, A.; Fouchier, R.: Mapping the antigenic and genetic evolution of influenza virus. Science 305, 371 (2004)
[21] Bailey, N.: The mathematical theory of infectious diseases and its application. (1975) · Zbl 0334.92024
[22] Gomes, M.; White, L.; Medley, G.: Infection, reinfection and vaccination under suboptimal immune protection: epidemiological perspectives. J. theoret. Biol. 228, 539 (2004)
[23] Hoskins, T. W.; Davies, J. R.; Smith, A. J.; Miller, C. L.; Allchin, A.: Assessment of inactivated influenza-A vaccine after three outbreaks of influenza A at christ’s hospital. Lancet 1, 33 (1979)
[24] Mcmichael, A.; Gotch, F.; Noble, G.; Beare, P.: Cytotoxic T-cell immunity to influenza. New engl. J. med. 309, 13 (1983)
[25] Hethcote, H.: An age-structured model for pertussis transmission. Math. biosci. 145, 89 (1997) · Zbl 0895.92027
[26] Hethcote, H.: Simulations of pertussis epidemiology in the united states: effects of adult booster vaccinations. Math. biosci. 158, 47 (1999) · Zbl 0934.92032
[27] Kermack, W. O.; Mckendrick, A. G.: Contributions to the mathematical theory of epidemics: II. The problem of endemicity. Proc. roy. Soc. lond. A 138, 55 (1932) · Zbl 0005.30501
[28] Inaba, H.: Kermack and mckendrick revisited: the variable susceptibility model for infectious diseases. Jpn. J. Indust. appl. Math. 18, 273 (2001) · Zbl 0985.35007
[29] Thieme, H.; Yang, J.: An endemic model with variable re-infection rate and applications to influenza. Math. biosci. 180, 207 (2002) · Zbl 1020.92028
[30] Six, H.; Glezen, W.; Kasel, W.; Couch, R.; Griffis, C.; Webster, R.: Heterogeneity of influenza viruses isolated from the Houston community during defined epidemic period. Genetic variation of viruses, 505 (1981)
[31] Fox, J.; Hall, C.; Cooney, M.; Foy, H.: Influenza virus infections in Seattle families, 1975-1979. I. study design, methods and the occurrence of infections by time and age. Am. J. Epidemiol. 116, 212 (1982)
[32] Glezen, W.; Couch, R.; Six, H.: The influenza herald wave. Am. J. Epidemiol. 116, 589 (1982)
[33] Ferguson, N.; Galvani, A.; Bush, R.: Ecological and immunological determinants of influenza evolution. Nature 422, 428 (2003)
[34] Abu-Raddad, L. J.; Ferguson, N. M.: Characterizing the symmetric equilibrium of multi-strain host-pathogen systems in the presence of cross immunity. J. math. Biol. 50, 531 (2005) · Zbl 1062.92057
[35] Anderson, R.; May, R.: Population biology of infectious diseases: part I. Nature 280, 361 (1979)
[36] Douglas, R.: Influenza in man. The influenza viruses and influenza, 395 (1975)
[37] Frank, A.; Taber, L.; Wells, C.; Wells, J.; Glezen, W.; Parades, A.: Patterns of shedding of myxoviruses and paramyxoviruses in children. J. infect. Diseases 144, 433 (1981)
[38] Buonagurio, D. A.; Nekada, S.; Parvin, J. D.; Krystal, M.; Palese, P.; Fitch, W. M.: Evolution of human influenza a viruses over 50years: rapid, uniform rate of change in NS gene. Science 232, 980 (1986)
[39] Plotkin, J. B.; Dushoff, J.; Levin, S. A.: Hemagglutinin sequence clusters and the antigenic evolution of influenza A virus. Proc. nat. Acad. sci. USA 99, 6263 (2002)
[40] Hay, A. J.; Gregory, V.; Douglas, A. R.; Lin, Y. P.: The evolution of human influenza viruses. Proc. roy. Soc. lond. B 356, 1861 (2001)
[41] Smith, D. J.; Forrest, S.; Ackley, D. H.; On, A. S. Perels: Variable efficacy of repeated annual influenza vaccination. Proc. nat. Acad. sci. USA 96, 14001 (1999)
[42] Cox, N.; Bender, C. A.: The molecular epidemiology of influenza viruses. Sem. virol. 6, 359 (1995)
[43] Luenberger, D. G.: Introduction to dynamic systems: theory models and applications. (1979) · Zbl 0458.93001
[44] Kermack, W.; Mckendrick, A.: A contribution to the mathematical theory of epidemics. Proc. roy. Soc. lond. A 115, 700 (1927) · Zbl 53.0517.01
[45] Hethcote, H.: Qualitative analyses of communicable disease models. Math. biosci. 28, 335 (1976) · Zbl 0326.92017
[46] Anderson, R.; May, R.: Infectious diseases in humans: dynamics and control. (1991)
[47] May, R. M.; Anderson, R. M.: Epidemiology and genetics in the coevolution of parasites and hosts. Proc. roy. Soc. lond. B 219, 281 (1983) · Zbl 0529.92014
[48] Van Baalen, M.; Sabelis, M. W.: The dynamics of multiple infection and the evolution of virulence. Am. natural. 146, 881 (1995)
[49] Galvani, A. P.: Epidemiology meets evolutionary ecology. Trends ecol. Evol. 18, 132 (2003)
[50] Spicer, C.; Lawrence, C.: Epidemic influenza in greater London. J. hyg. (Cambridge) 93, 105 (1984)
[51] Frank, A.; Taber, L.; Porter, C.: Influenza B virus reinfection. Am. J. Epidemiol. 125, 576 (1987)
[52] Hope-Simpson, R.; Golubev, D.: A new concept of the epidemic process of influenza A virus. Epidemiol. infect. 99, 5 (1987)
[53] Dowell, S. F.: Seasonal variation in host susceptibility and cycles of certain infectious diseases. Emerg. infect. Diseases 7, 369 (2001)
[54] Nguyen-Van-Tam, J.; Brockway, C.; Pearson, J.; Hayward, A.; Fleming, D.: Excess hospital admissions for pneumonia and influenza in persons $\geqslant65years $associated with influenza epidemics in three English dealt districts: 1987-1989. Epidemiol. infect. 126, 71 (2001)
[55] London, W.; Yorke, J.: Recurrent outbreaks of measles, chickenpox and mumps. I. seasonal variation in contact rate. Am. J. Epidemiol. 98, 458 (1973)
[56] Yorke, J.; London, W.: Recurrent outbreaks of measles, chicken pox and mumps. II. systematic differences in contact rates and stochastic effects. Am. J. Epidemiol. 98, 469 (1973)
[57] Dietz, K.: The incidence of infectious diseases under the influence of seasonal fluctuations. Lect. notes biomath. 11, 1 (1976) · Zbl 0333.92014
[58] Gog, J. R.; Rimmelzwaan, G. F.; Osterhaus, A. D. M.E.; Grenfell, B. T.: Population dynamics of rapid fixation in cytotoxic T lymphocyte escape mutants of influenza A. Proc. nat. Acad. sci. USA 100, 11143 (2003)
[59] Guckenheimer, J.; Holmes, P.: Nonlinear oscillations, dynamical systems and bifurcations of vector fields. (1983) · Zbl 0515.34001
[60] Khibnik, A. I.; Kuznetsov, Y. A.; Levitin, V. V.; Nikolaev, E. V.: Continuation techniques and interactive software for bifurcation analysis of odes and iterated maps. Physica D 62, 360 (1993) · Zbl 0784.34030
[61] E.J. Doedel, J.P. Kernévez, AUTO: software for continuation and bifurcation problems in ordinary differential equations, Applied Mathematics Report, California Institute of Technology, Reading, MA, USA, 1986.
[62] Kuznetsov, Y.: Elements of applied bifurcation theory. (1995) · Zbl 0829.58029
[63] Aaron, J. L.; Schwartz, I. B.: Seasonality and period-doubling bifurcations in an epidemic model. J. theoret. Biol. 110, 665 (1984)
[64] Kuznetsov, Y.; Piccardi, C.: Bifurcation analysis of periodic SEIR and SIR epidemic model. J. math. Biol. 32, 109 (1994) · Zbl 0786.92022
[65] Simonsen, L.: The global impact of influenza on morbidity and mortality. Vaccine 17, S3 (1999)
[66] Hampson, A.: Epidemiological data on influenza in asian countries. Vaccine 17, S19 (1999)
[67] Shek, L. P. -C.; Lee, B. -W.: Epidemiology and seasonality of respiratory tract virus infections in the tropics. Paediatr. resp. Rev. 4, 105 (2003)
[68] Chew, F.; Doraisingham, S.; Ling, A.; Kumarasinghe, G.; Lee, B.: Seasonal trends of viral respiratory tract infections in the tropics. Epidemiol. infect. 121, 121 (1998)
[69] Simonsen, L.: Influenza-related morbidity and mortality among children in developed and developing countries. Int. cong. Ser. 1219, 13 (2001)
[70] Couch, R.: Advances in influenza virus vaccine research. Ann. NY acad. Sci. 685, 803 (1993)
[71] Fitzner, K. A.; Mcghee, S. M.; Hedley, A. J.; Shortridge, K. F.: Influenza surveillance in Hong Kong: results of a trial physician sentinel programme. Hong Kong med. J. 5, 87 (1999)
[72] Dushoff, J.; Plotkin, J. B.; Levin, S.; Earn, D.: Dynamical resonance can account for seasonality of influenza epidemics. Proc. nat. Acad. sci. USA 101, 16915 (2004)
[73] Gupta, S.; Ferguson, N.; Anderson, R.: Chaos persistence and evolution of strain structure in antigenically diverse infectious agents. Science 280, 912 (1998)
[74] Fleming, D.; Zambon, M.; Bartelds, A.: Population estimates of persons presenting to general practitioners with influenza-like illness, 1987-1996: a study of the demography of influenza-like illness in sentinel practice networks in england and wales, and in The Netherlands. Epidemiol. infect. 124, 245 (2000)
[75] Rinaldi, S.; Casagrandi, R.; Gragnani, A.: Reduced order models for the prediction of extreme episodes. Chaos solitons fract. 12, 313 (2001) · Zbl 0976.92030
[76] Watson, J.: Surveillance of influenza. Textbook of influenza, 207 (1998)
[77] Glezen, W.; Couch, R.: Interpandemic influenza in the Houston area, 1974-76. New engl. J. med. 298, 587 (1978)
[78] Nguyen-Van-Tam, J.: Epidemiology of influenza. Textbook of influenza, 181 (1998)
[79] J. Aguilera, J. Paget, J. Manuguerra, Survey of influenza surveillance systems in Europe, Final report, EISS, EUROGROG (2001), URL: <http://www.eiss.org/documents/inventory_survey.pdf>.
[80] Toubiana, L.; Flahault, A.: A space-time criterion for early detection of epidemics of influenza-like-illness. Euro. J. Epidemiol. 14, 465 (1998)
[81] Schwartz, I.: Multiple stable recurrent outbreaks and predictability in seasonally forced nonlinear epidemic models. J. math. Biol. 21, 347 (1985) · Zbl 0558.92013
[82] Keeling, M.; Rohani, P.; Grenfell, B.: Seasonally forced disease dynamics explored as switching between attractors. Physica D 148, 317 (2001) · Zbl 1076.92511
[83] Aron, J.: Multiple attractors in the response to a vaccination program. Theoret. populat. Biol. 38, 58 (1990) · Zbl 0699.92016
[84] Earn, D. J. D.; Rohani, P.; Bolker, B. M.; Grenfell, B. T.: A simple model for complex dynamical transitions in epidemics. Science 287, 667 (2000)
[85] Rohani, P.; Keeling, M. J.; Grenfell, B. T.: The interplay between determinism and stochasticity in childhood diseases. Amer. natural. 159, 469 (2002)
[86] Castillo-Chavez, C.; Hethcote, H. W.; Andreasen, V.; Levin, S. A.; Liu, W. M.: Epidemiological models with age-structure, proportionate mixing, and cross-immunity. J. math. Biol. 27, 233 (1989) · Zbl 0715.92028
[87] Kamo, M.; Sasaki, A.: The effect of cross-immunity and seasonal forcing in a multi-strain epidemic model. Physica D 165, 228 (2002) · Zbl 0993.92030
[88] Murray, J. D.: Mathematical biology. (1989) · Zbl 0682.92001
[89] Andreasen, V.: Dynamics of annual infleunza A epidemics with immuno-selection. J. math. Biol. 46, 504 (2003) · Zbl 1037.92031
[90] Boni, M.; Gog, J.; Andreasen, V.; Christiansen, F.: Influenza drift and epidemic size: the race between generating and escaping immunity. Theoret. populat. Biol. 65, 179 (2004) · Zbl 1106.92048
[91] Ramasubramanian, K.; Sriram, M.: A comparative study of computation of Lyapunov spectra with different algorithms. Physica D 139, 72 (2000) · Zbl 0947.34041