Ronto, Andrei A note on the periodicity in difference equations. (English) Zbl 1090.34582 Arch. Math., Brno 36, Suppl., 575-584 (2000). Sufficient conditions are obtained for the existence of a unique periodic solution in a Banach space of the linear first order difference equation \[ (\Delta x)(n)=\sum _{\nu =0}^{N-1}L_{n,\nu }x(\nu )+f(n),\quad 0\leq n\leq N-1 \] with \((\Delta x)(n):=x(n+1)-x(n)\) for \(0\leq n\leq N-1\), \((\Delta x)(N-1):=x(0)-x(N-1)\) where \((L_{n,\nu })_{n,\nu =0}^N\) are certain linear bounded operators such that \(L_{N,\nu }=L_{0,\nu }\) for all \(\nu \in \{0,1,\dots ,N-1\}\) and \(f(n)\) is a summable sequence. Reviewer: Josef DiblĂk (Brno) MSC: 34K06 Linear functional-differential equations 34K13 Periodic solutions to functional-differential equations Keywords:difference equation; periodic solution PDF BibTeX XML Cite \textit{A. Ronto}, Arch. Math., Brno 36, 575--584 (2000; Zbl 1090.34582) Full Text: EuDML EMIS OpenURL