Wang, Xiao Fan; Chen, Guanrong Chaotification via arbitrarily small feedback controls: theory, method, and applications. (English) Zbl 1090.37532 Int. J. Bifurcation Chaos Appl. Sci. Eng. 10, No. 3, 549-570 (2000). Summary: The problem of making a stable nonlinear autonomous system chaotic or enhancing the existing chaos of an originally chaotic system by using a small-amplitude feedback controller is studied. The designed controller is a linear feedback controller composed with a nonlinear modulo or sawtooth function, which can lead to uniformly bounded state vectors of the controlled system with positive Lyapunov exponents, thereby yielding chaotic dynamics. We mathematically prove that the controlled system is indeed chaotic in the sense of Li and Yorke. A few potential applications of the new chaotification algorithm are briefly discussed. Cited in 37 Documents MSC: 37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior 37N35 Dynamical systems in control 93B52 Feedback control 93C55 Discrete-time control/observation systems PDF BibTeX XML Cite \textit{X. F. Wang} and \textit{G. Chen}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 10, No. 3, 549--570 (2000; Zbl 1090.37532) Full Text: DOI References: [1] DOI: 10.1142/S0218127499001516 · Zbl 1089.37510 [2] DOI: 10.1109/81.633897 [3] DOI: 10.1063/1.532670 · Zbl 0959.37027 [4] DOI: 10.1142/S021812749600076X · Zbl 0875.93157 [5] DOI: 10.1142/S0218127498001236 · Zbl 0941.93522 [6] Chen L., Physica 104 pp 286– (1997) [7] DOI: 10.1002/int.4550100107 · Zbl 0830.92009 [8] DOI: 10.1126/science.1519060 [9] DOI: 10.1103/PhysRevLett.74.4420 [10] DOI: 10.2307/2318254 · Zbl 0351.92021 [11] DOI: 10.1016/0022-247X(78)90115-4 · Zbl 0381.58004 [12] DOI: 10.1038/370615a0 [13] DOI: 10.1038/363411a0 [14] DOI: 10.3792/pjaa.55.286 · Zbl 0451.58031 [15] DOI: 10.1017/S0140525X00047336 [16] DOI: 10.1080/00207178308933126 · Zbl 0525.93046 [17] DOI: 10.1016/0020-7462(85)90025-3 · Zbl 0632.93050 [18] DOI: 10.1109/37.642975 [19] Wang X. F., IEEE Trans. Circuits Syst., in press. (2000) [20] Yang W., Phys. Rev. 51 pp 102– (1995) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.