Local and global Hopf bifurcation in a delayed hematopoiesis model. (English) Zbl 1090.37547

Summary: We consider the following nonlinear differential equation \[ \frac{dx}{dt} = x(t) \left[\frac{q}{r+x^n(t-\tau)}-p\right].\tag{1} \] We first consider the existence of local Hopf bifurcations, and then derive explicit formulas which determine the stability, direction and other properties of bifurcating periodic solutions, using the normal form theory and center manifold reduction. Further, particular attention is focused on the existence of the global Hopf bifurcation. By using the global Hopf bifurcation theory due to Wu [1998], we show that the local Hopf bifurcation of (1) implies the global Hopf bifurcation after the second critical value of the delay \(t\). Finally, numerical simulation results are given to support the theoretical predictions.


37G15 Bifurcations of limit cycles and periodic orbits in dynamical systems
34K18 Bifurcation theory of functional-differential equations
37N25 Dynamical systems in biology
92C50 Medical applications (general)
Full Text: DOI


[1] DOI: 10.1016/0022-0396(74)90084-9 · Zbl 0295.34055 · doi:10.1016/0022-0396(74)90084-9
[2] Giannakopoulos F., J. Math. Anal. Appl. 273 pp 425–
[3] DOI: 10.1007/978-1-4612-4342-7 · doi:10.1007/978-1-4612-4342-7
[4] Hassard B., Theory and Applications of Hopf Bifurcation (1981) · Zbl 0474.34002
[5] Kuang Y., Delay Differential Equations with Applications in Population Dynamics (1993) · Zbl 0777.34002
[6] DOI: 10.1016/S0895-7177(01)00166-2 · Zbl 1069.34107 · doi:10.1016/S0895-7177(01)00166-2
[7] DOI: 10.1007/BF01790539 · Zbl 0617.34071 · doi:10.1007/BF01790539
[8] Nazarenko A., Biofisika 21 pp 352–
[9] DOI: 10.1007/BF02417109 · Zbl 0323.34061 · doi:10.1007/BF02417109
[10] Ruan S., Proc. R. Soc. Edinb. 129 pp 1017– · Zbl 0946.34062 · doi:10.1017/S0308210500031061
[11] DOI: 10.1080/0003681021000004429 · Zbl 1041.34061 · doi:10.1080/0003681021000004429
[12] Song Y., Diff. Eqns. Dyn. Syst. 9 pp 321–
[13] Song Y., Chinese Ann. Math. Series A
[14] Song Y., J. Math. Anal. Appl.
[15] Táboas P., Proc. R. Soc. Edinb. 116 pp 85– · Zbl 0719.34125 · doi:10.1017/S0308210500031395
[16] Wei J., Acta Math. Sin. 45 pp 93–
[17] DOI: 10.1007/978-1-4612-4050-1 · doi:10.1007/978-1-4612-4050-1
[18] DOI: 10.1090/S0002-9947-98-02083-2 · Zbl 0905.34034 · doi:10.1090/S0002-9947-98-02083-2
[19] DOI: 10.1016/0362-546X(95)00230-S · Zbl 0872.34047 · doi:10.1016/0362-546X(95)00230-S
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.