zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global stability and asymptotics of some classes of rational difference equations. (English) Zbl 1090.39009
The author proves that the equilibrium solution $\bar{x}=1$ is globally asymptotically stable for the difference equations $$x_{n+3}=\frac{x_{n+j}+x_{n+i}~x_{n+k}+a}{x_{n+i}+x_{n+j}~x_{n+k}+a},\quad n=0,1,2,\dots$$ where the initial values $x_{-2},x_{-1},x_0$ are positive, the parameter $a$ is nonnegative, $i,j\in\{0,1,2\}$ but different from each other, and $k=3-i-j$. In his proof he utilizes a global convergence result due to {\it N. Kruse and T. Nesemann} [J. Math. Anal. Appl. 235, 151--158 (1999; Zbl 0933.37016)]. In addition, using an inclusion theorem due to {\it L. Berg} [J. Difference Equ. Appl. 10, 399--408 (2004; Zbl 1056.39003)], he finds asymptotics of some solutions of the above difference equations.

39A11Stability of difference equations (MSC2000)
39A20Generalized difference equations
Full Text: DOI
[1] Amleh, A. M.; Kruse, N.; Ladas, G.: On a class of difference equations with strong negative feedback. J. difference equ. Appl. 5, 497-515 (1999) · Zbl 0951.39002
[2] Berg, L.: Asymptotische darstellungen und entwicklungen. (1968) · Zbl 0165.36901
[3] Berg, L.: On the asymptotics of nonlinear difference equations. Z. anal. Anwendungen 21, 1061-1074 (2002) · Zbl 1030.39006
[4] Berg, L.: Inclusion theorems for non-linear difference equations with applications. J. difference equ. Appl. 10, 399-408 (2004) · Zbl 1056.39003
[5] Berg, L.: Corrections to ”inclusion theorems for non-linear difference equations with applications,” from [3]. J. difference equ. Appl. 11, 181-182 (2005) · Zbl 1080.39002
[6] Kruse, N.; Nesemann, T.: Global asymptotic stability in some discrete dynamical systems. J. math. Anal. appl. 235, 151-158 (1999) · Zbl 0933.37016
[7] Xianyi, L.; Deming, Z.: Global asymptotic stability for two recursive difference equations. Appl. math. Comput. 150, 481-492 (2004) · Zbl 1044.39006
[8] Xianyi, L.; Deming, Z.: Global asymptotic stability of a nonlinear recursive sequence. Comput. math. Appl. 17, 833-838 (2004) · Zbl 1068.39014