Federson, M.; Bianconi, R. Linear Volterra-Stieltjes integral equations in the sense of the Kurzweil-Henstock integral. (English) Zbl 1090.45001 Arch. Math., Brno 37, No. 4, 307-328 (2001). Summary: In 1990, C. S. Hönig proved that the linear Volterra integral equation \[ x(t) - (K) \int _{[a, t]} \alpha (t,s)x(s)\,\text ds = f (t), \quad t \in [a,b] \] where the functions are Banach space-valued and \(f\) is a Kurzweil integrable function defined on a compact interval \([a, b]\) of the real line \(\mathbb R\), admits one and only one solution in the space of the Kurzweil integrable functions with resolvent given by the Neumann series. In the present paper, we extend Hönig’s result to the linear Volterra-Stieltjes integral equation \[ x(t) - (K) \int _{[a, t]} \alpha (t,s)x(s)\,\text dg(s) =f (t), \quad t \in [a, b] \] in a real-valued context. Cited in 4 Documents MSC: 45A05 Linear integral equations 26A39 Denjoy and Perron integrals, other special integrals Keywords:linear integral equations; Kurzweil-Henstock integrals PDF BibTeX XML Cite \textit{M. Federson} and \textit{R. Bianconi}, Arch. Math., Brno 37, No. 4, 307--328 (2001; Zbl 1090.45001) Full Text: EuDML EMIS