Seddighin, Morteza Computation of antieigenvalues. (English) Zbl 1090.47038 Int. J. Math. Math. Sci. 2005, No. 5, 815-821 (2005). Using several results due to M. G. Krein (1969), P. R. Halmos (1982) and G. De Barra (1981) and the Lagrange multiplier method, the author establishes some formulas for the first antieigenvalue \[ \mu_1(T)=\displaystyle\text{inf}_{Tf\not=0}\displaystyle\frac{\text{Re}(Tf,f)}{\| Tf\| \| f\| } \] of a strictly accretive operator \(T\). Reviewer: Rodica Luca (Iaşi) Cited in 2 Documents MSC: 47H06 Nonlinear accretive operators, dissipative operators, etc. 47B44 Linear accretive operators, dissipative operators, etc. Keywords:strictly accretive operator; antieigenvalue; hyponormal operator; seminormal operator PDF BibTeX XML Cite \textit{M. Seddighin}, Int. J. Math. Math. Sci. 2005, No. 5, 815--821 (2005; Zbl 1090.47038) Full Text: DOI EuDML OpenURL