×

zbMATH — the first resource for mathematics

Tail asymptotics for exponential functionals of Lévy processes. (English) Zbl 1090.60046
The paper presents rather technical results on the tail asymptotics of some exponential functionals of Lévy processes.

MSC:
60G51 Processes with independent increments; Lévy processes
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Asmussen, S., Subexponential asymptotics for stochastic processes: extremal behavior, stationary distributions and first passage probabilities, Ann. appl. probab., 8, 2, 354-374, (1998), ISSN 1050-5164 · Zbl 0942.60034
[2] Bertoin, J., Lévy processes, (), ISBN 0-521-56243-0 · Zbl 0809.60085
[3] J. Bertoin, P. Biane, M. Yor, Poissonian exponential functionals, q-series, q-integrals, and the moment problem for log-normal distributions, in: Seminar on Stochastic Analysis, Random Fields and Applications IV, Progress Probability, Birkhäuser, Basel, 2004, pp. 45-56. · Zbl 1056.60046
[4] Bertoin, J.; Yor, M., On the entire moments of self-similar Markov processes and exponential functionals of Lévy processes, Ann. fac. sci. Toulouse math. (6), 11, 1, 33-45, (2002), ISSN 0240-2963 · Zbl 1031.60038
[5] Bingham, N.H.; Goldie, C.M.; Teugels, J.L., Regular variation, (), ISBN 0-521-30787-2 · Zbl 0667.26003
[6] J. Blanchet, P. Glynn, Approximations for the distribution of infinite horizon discounted rewards, Technical Report, Department of Management Science and Engineering, Stanford University, 2004.
[7] Braverman, M.; Mikosch, T.; Samorodnitsky, G., Tail probabilities of subadditive functionals of Lévy processes, Ann. appl. probab., 12, 1, 69-100, (2002), ISSN 1050-5164. · Zbl 1035.60045
[8] Breiman, L., On some limit theorems similar to the arc-sin law, Teor. verojatnost. i primenen., 10, 351-360, (1965) · Zbl 0147.37004
[9] P. Carmona, F. Petit, M. Yor, On the distribution and asymptotic results for exponential functionals of Lévy processes, in: Exponential functionals and principal values related to Brownian motion, Bibl. Rev. Mat. Iberoamericana, Rev. Mat. Iberoamericana, Madrid, 1997, pp. 73-130. · Zbl 0905.60056
[10] Denisov, D.; Foss, S.; Korshunov, D., Tail asymptotics for the supremum of a random walk when the Mean is not finite, Queueing syst., 46, 1-2, 15-33, (2004), ISSN 0257-0130 · Zbl 1056.90028
[11] D. Dufresne, The distribution of a perpetuity, with applications to risk theory and pension funding, Scand. Actuar. J. (1-2) (1990) 39-79 ISSN 0346-1238. · Zbl 0743.62101
[12] Dumas, V.; Guillemin, F.; Robert, P., A Markovian analysis of additive-increase multiplicative-decrease algorithms, Adv. appl. probab., 34, 1, 85-111, (2002), ISSN 0001-8678 · Zbl 1002.60091
[13] Embrechts, P.; Goldie, C.M.; Veraverbeke, N., Subexponentiality and infinite divisibility, Z. wahrsch. verw. gebiete, 49, 3, 335-347, (1979), ISSN 0044-3719 · Zbl 0397.60024
[14] Embrechts, P.; Klüppelberg, C.; Mikosch, T., Modelling extremal events for insurance and finance, (), ISBN 3-540-60931-8 · Zbl 0873.62116
[15] K.B. Erickson, R.A. Maller, Generalised Ornstein-Uhlenbeck processes and the convergence of Lévy integrals, in: Séminaire de Probabilités XXXVIII, Lecture Notes in Mathematics, vol. 1857, Springer, Berlin, 2005, pp. 70-94. · Zbl 1066.60053
[16] S. Foss, T. Konstantapoulos, S. Zachary, The principle of a single big jump: discrete and continuous time modulated random walks with heavy-tailed increments, 2005, preprint available as arXiv:math.PR/0509605 at http://arxiv.org/PS_cache/math/pdf/0509/0509605.pdf.
[17] Foss, S.; Palmowski, Z.; Zachary, S., The probability of exceeding a high boundary on a random time interval for a heavy-tailed random walk, Ann. appl. probab., 15, 3, 1936-1957, (2005), ISSN 1050-5164 · Zbl 1083.60036
[18] Goldie, C.M., Implicit renewal theory and tails of solutions of random equations, Ann. appl. probab., 1, 1, 126-166, (1991), ISSN 1050-5164 · Zbl 0724.60076
[19] Goldie, C.M.; Grübel, R., Perpetuities with thin tails, Adv. appl. probab., 28, 2, 463-480, (1996), ISSN 0001-8678 · Zbl 0862.60046
[20] Goldie, C.M.; Maller, R.A., Stability of perpetuities, Ann. probab., 28, 3, 1195-1218, (2000), ISSN 0091-1798 · Zbl 1023.60037
[21] Guillemin, F.; Robert, P.; Zwart, B., AIMD algorithms and exponential functionals, Ann. appl. probab., 14, 1, 90-117, (2004), ISSN 1050-5164 · Zbl 1041.60072
[22] Kesten, H., Random difference equations and renewal theory for products of random matrices, Acta math., 131, 207-248, (1973) · Zbl 0291.60029
[23] Klüppelberg, C.; Kyprianou, A.E.; Maller, R.A., Ruin probabilities and overshoots for general Lévy insurance risk processes, Ann. appl. probab., 14, 4, 1766-1801, (2004), ISSN 1050-5164 · Zbl 1066.60049
[24] C. Klüppelberg, A. Lindner, R. Maller, Continuous time volatility modelling: COGARCH versus Ornstein-Uhlenbeck models, in: Y. Kabanov, R. Lipster, J. Stoyanov (Eds.), From stochastic calculus to mathematical finance. The Shiryaev Festschrift, Springer, to appear. Available at http://www-m4.ma.tum.de/m4/Papers/Klueppelberg/cog-spr.pdf.
[25] D.G. Konstantinides, T. Mikosch, Large deviations and ruin probabilities for solutions to stochastic recurrence equations with heavy-tailed innovations, Ann. Probab. 33 (5) (2005) 1992-2035 ISSN 0091-1798. · Zbl 1085.60017
[26] Litvak, N.; van Zwet, W.R., On the minimal travel time needed to collect n items on circle, Ann. appl. probab., 14, 2, 881-902, (2004), ISSN 1050-5164 · Zbl 1121.90012
[27] Rivero, V., A law of iterated logarithm for increasing self-similar Markov processes, Stochastic stochastic rep., 75, 6, 443-472, (2003), ISSN 1045-1129 · Zbl 1053.60027
[28] Rivero, V., Recurrent extensions of self-similar Markov processes and cramér’s condition, Bernoulli, 11, 3, 471-509, (2005), ISSN 1350-7265 · Zbl 1077.60055
[29] Rootzén, H., Extreme value theory for moving average processes, Ann. probab., 14, 2, 612-652, (1986), ISSN 0091-1798 · Zbl 0604.60019
[30] Veraverbeke, N., Asymptotic behaviour of Wiener-Hopf factors of a random walk, Stochastic processes appl., 5, 1, 27-37, (1977) · Zbl 0353.60073
[31] Willekens, E., On the supremum of an infinitely divisible process, Stochastic process. appl., 26, 1, 173-175, (1987), ISSN 0304-4149 · Zbl 0633.60025
[32] M. Yor, Exponential functionals of Brownian motion and related processes, Springer Finance. Springer, Berlin, 2001. ISBN 3-540-65943-9. (With an introductory chapter by Hélyette Geman, Chapters 1, 3, 4, 8 translated from the French by Stephen S. Wilson).
[33] Zachary, S., A note on Veraverbeke’s theorem, Queueing syst., 46, 1-2, 9-14, (2004), ISSN 0257-0130 · Zbl 1056.90040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.