Abbasbandy, S. Numerical solutions of the integral equations: homotopy perturbation method and Adomian’s decomposition method. (English) Zbl 1090.65143 Appl. Math. Comput. 173, No. 1, 493-500 (2006). Summary: A homotopy perturbation method is proposed to solve non-singular integral equations. Comparisons are made between Adomian’s decomposition method and the proposed method. It is shown, Adomian’s decomposition method is a homotopy, only. Finally, by using homotopy perturbation method, a new iterative scheme, like Adomian’s decomposition method, is proposed for solving the nonsingular integral equations of the first kind. The results reveal that the proposed method is very effective and simple. Cited in 83 Documents MSC: 65R20 Numerical methods for integral equations 45B05 Fredholm integral equations Keywords:homotopy perturbation method; Fredholm integral equations; Adomian’s decomposition method; numerical examples; comparison of methods PDF BibTeX XML Cite \textit{S. Abbasbandy}, Appl. Math. Comput. 173, No. 1, 493--500 (2006; Zbl 1090.65143) Full Text: DOI References: [1] Abbasbandy, S.; Babolian, E., Automatic augmented Galerkin algorithms for linear first kind integral equations: non-singular and weak singular kernels, Bull. Iranian Math. Soc., 21, 1, 35-62 (1995) · Zbl 0865.65097 [2] Abbasbandy, S.; Babolian, E., Automatic augmented Galerkin algorithms for Fredholm integral equations of the first kind, Acta Math. Sci., 17, 1, 69-84 (1997), (English ed.) · Zbl 0890.65137 [3] Adomian, G., Solving Frontier Problems of Physics: the Decomposition Method (1994), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0802.65122 [4] Adomian, G.; Rach, R., On the solution of algebraic equations by the decomposition method, Math. Anal. Appl., 105, 141-166 (1985) · Zbl 0552.60060 [5] Babolian, E.; Davari, A., Numerical implementation of Adomian decomposition method, Appl. Math. Comput., 153, 301-305 (2004) · Zbl 1048.65131 [6] Cherruault, Y., Convergence of Adomian’s method, Kybernetes, 18, 2, 31-38 (1989) · Zbl 0697.65051 [7] Cherruault, Y.; Saccomandi, G.; Some, B., New results for convergence of Adomian’s method applied to integral equations, Math. Comput. Modelling, 16, 2, 85-93 (1992) · Zbl 0756.65083 [8] Hillermeier, C., Generalized homotopy approach to multiobjective optimization, Int. J. Optim. Theory Appl., 110, 3, 557-583 (2001) · Zbl 1064.90041 [9] He, J.-H., An approximate solution technique depending upon an artificial parameter, Commun. Non-linear Sci. Simulat., 3, 2, 92-97 (1998) · Zbl 0921.35009 [10] He, J.-H., Homotopy perturbation technique, Comput. Methods Appl. Mech. Engng., 178, 3-4, 257-262 (1999) · Zbl 0956.70017 [11] He, J.-H., Variational iteration method: a kind of nonlinear analytical technique: some examples, Int. J. Non-Linear Mech., 34, 4, 699-708 (1999) · Zbl 1342.34005 [12] He, J.-H., A coupling method of homotopy technique and perturbation technique for nonlinear problems, Int. J. Non-linear Mech., 35, 1, 37-43 (2000) · Zbl 1068.74618 [13] He, J.-H., The homotopy perturbation method for nonlinear oscillators with discontinuities, Appl. Math. Comput., 151, 287-292 (2004) · Zbl 1039.65052 [14] He, J.-H., Comparison of homotopy perturbtion method and homotopy analysis method, Appl. Math. Comput., 156, 527-539 (2004) · Zbl 1062.65074 [15] Liao, S. J., An approximate solution technique not depending on small parameters: a special example, Int. J. Non-Linear Mech., 30, 3, 371-380 (1995) · Zbl 0837.76073 [16] Liao, S. J., Boundary element method for general nonlinear differential operators, Eng. Anal. Boundary Element, 20, 2, 91-99 (1997) [17] Nayfeh, A. H., Problems in Perturbation (1985), John Wiley: John Wiley New York · Zbl 0139.31904 [18] Rashed, M. T., Numerical solutions of functional integral equations, Appl. Math. Comput., 156, 507-512 (2004) · Zbl 1061.65147 [19] Wazwaz, A. M., A First Course in Integral Equations (1997), World Scientific: World Scientific New Jersey This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.