Abbasbandy, S.; Allahviranloo, T. The Adomian decomposition method applied to the fuzzy system of Fredholm integral equations of the second kind. (English) Zbl 1090.65144 Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 14, No. 1, 101-110 (2006). Consider a Fredholm integral equation in a fuzzy setting. The authors suggest to employ the Adomian decomposition method for the numerical solution of the equation. The resulting approximations are computed and some numerical results for specific examples are presented. No theoretical investigation of the convergence behaviour or any other analytical properties are given. Reviewer: Kai Diethelm (Braunschweig) Cited in 24 Documents MSC: 65R20 Numerical methods for integral equations 45B05 Fredholm integral equations 26E50 Fuzzy real analysis Keywords:Adomian decomposition method; Fuzzy Fredholm integral equation; numerical results PDF BibTeX XML Cite \textit{S. Abbasbandy} and \textit{T. Allahviranloo}, Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 14, No. 1, 101--110 (2006; Zbl 1090.65144) Full Text: DOI OpenURL References: [1] Abbasbandy S., Math. Comput. Appl. 7 pp 41– [2] Abbasbandy S., Comput. Methods Appl. Math. 2 pp 113– [3] Abbasbandy S., Nonlinear Stud. 11 pp 117– [4] DOI: 10.1016/j.camwa.2004.03.009 · Zbl 1074.65072 [5] DOI: 10.1016/j.chaos.2005.03.018 · Zbl 1073.65054 [6] DOI: 10.1016/0895-7177(95)00103-9 · Zbl 0830.65010 [7] DOI: 10.1016/0895-7177(90)90125-7 · Zbl 0713.65051 [8] DOI: 10.1016/0898-1221(94)90132-5 · Zbl 0803.35020 [9] Babolian E., Appl. Math. Comput. 161 pp 733– [10] DOI: 10.1016/S0165-0114(98)00355-8 · Zbl 0931.65076 [11] DOI: 10.1142/2326 [12] Hüllermeier E., Internat. J. Uncertain. Fuzziness Knowledge-Bases Systems 35 pp 389– [13] DOI: 10.1016/0165-0114(87)90029-7 · Zbl 0646.34019 [14] DOI: 10.1016/S0165-0114(98)00341-8 · Zbl 0966.45001 [15] DOI: 10.1016/0022-247X(83)90169-5 · Zbl 0528.54009 [16] DOI: 10.1016/S0165-0114(00)00131-7 · Zbl 1003.34046 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.