Dolejší, Vít; Feistauer, Miloslav; Felcman, Jiří; Kliková, Alice Error estimates for barycentric finite volumes combined with nonconforming finite elements applied to nonlinear convection-diffusion problems. (English) Zbl 1090.76550 Appl. Math., Praha 47, No. 4, 301-340 (2002). Summary: The subject of the paper is the derivation of error estimates for the combined finite volume-finite element method used for the numerical solution of nonstationary nonlinear convection-diffusion problems. Here we analyze the combination of barycentric finite volumes associated with sides of triangulation with the piecewise linear nonconforming Crouzeix-Raviart finite elements. Under some assumptions on the regularity of the exact solution, the \(L^2(L^2)\) and \(L^2(H^1)\) error estimates are established. At the end of the paper, some computational results are presented demonstrating the application of the method to the solution of viscous gas flow. Cited in 9 Documents MSC: 76M12 Finite volume methods applied to problems in fluid mechanics 76M25 Other numerical methods (fluid mechanics) (MSC2010) 65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs 65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs 35K60 Nonlinear initial, boundary and initial-boundary value problems for linear parabolic equations Keywords:nonlinear convection-diffusion problem; compressible Navier-Stokes equations; cascade flow; barycentric finite volumes; discrete maximum principle; a priori estimates; error estimates PDF BibTeX XML Cite \textit{V. Dolejší} et al., Appl. Math., Praha 47, No. 4, 301--340 (2002; Zbl 1090.76550) Full Text: DOI EuDML References: [1] D. Adam, A. Felgenhauer, H.-G. Roos and M. Stynes: A nonconforming finite element method for a singularly perturbed boundary value problem. Computing 54 (1995), 1-25. · Zbl 0813.65105 [2] Ph. Angot, V. Dolejší, M. Feistauer and J. Felcman: Analysis of a combined barycentric finite volume-nonconforming finite element method for nonlinear convection-diffusion problems. Appl. Math. 43 (1998), 263-310. · Zbl 0942.76035 [3] P. Arminjon, A. Madrane: A mixed finite volume/finite element method for 2-dimensional compressible Navier-Stokes equations on unstructured grids. Hyperbolic Problems: Theory, Numerics, Applications, M. Fey, R. Jeltsch (eds.), Birkhäuser, Basel, 1999. · Zbl 0939.76049 [4] P. G. Ciarlet: The Finite Elements Method for Elliptic Problems. Studies in Mathematics and its Applications, Vol. 4. North-Holland, Amsterdam, 1978. [5] M. Crouzeix, P.-A. Raviart: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Anal. Numér. 7 (1973), 33-75. · Zbl 0302.65087 [6] V. Dolejší: Sur des méthodes combinant des volumes finis et des éléments finis pour le calcul d’écoulements compressibles sur des maillages non structurés. PhD Dissertation, Charles University Prague-L’Université Méditerranée Marseille, 1998. [7] V. Dolejší: Anisotropic mesh adaptation for finite volume and finite element methods on triangular meshes. Comput. Vis. Sci. 1 (1998), 165-178. · Zbl 0917.68214 [8] V. Dolejší, P. Angot: Finite volume methods on unstructured meshes for compressible flows. Finite Volumes for Complex Applications (Problems and Perspectives),, F. Benkhaldoun, R. Vilsmeier (eds.), Hermes, Rouen, 1996, pp. 667-674. [9] R. Eymand, T. Gallouët and R. Herbin: Finite Volume Methods. Technical Report 97-19, Centre de Mathématiques et d’Informatique. Université de Provence, Marseille, 1997. [10] V. Dolejší, M. Feistauer and J. Felcman: On the discrete Friedrichs inequality for nonconforming finite elements. Numer. Funct. Anal. Optim. 20 (1999), 437-447. · Zbl 0938.65130 [11] M. Feistauer: Mathematical Methods in Fluid Dynamics. Pitman Monographs and Surveys in Pure and Applied Mathematics 67. Longman Scientific & Technical, Harlow, 1993. [12] M. Feistauer, V. Dolejší, J. Felcman and A. Kliková: Adaptive mesh refinement for problems of fluid dynamics. Proc. of Colloquium Fluid Dynamics ’99, P. Jonáš, V. Uruba (eds.), Institute of Thermomechanics, Academy of Sciences, Prague, 1999, pp. 53-60. [13] M. Feistauer, J. Felcman: Convection-diffusion problems and compressible Navier-Stokes equations. The Mathematics of Finite Elements and Applications, J. R. Whiteman (ed.), John Wiley & Sons, 1997, pp. 175-194. · Zbl 0891.76051 [14] M. Feistauer, J. Felcman and V. Dolejší: Numerical simulation of compresssible viscous flow through cascades of profiles. Z. Angew. Math. Mech. 76 (1996), 297-300. · Zbl 0925.76443 [15] M. Feistauer, J. Felcman and M. Lukáčová: Combined finite elements-finite volume solution of compressible flow. J. Comput. Appl. Math. 63 (1995), 179-199. · Zbl 0852.76040 [16] M. Feistauer, J. Felcman and M. Lukáčová: On the convergence of a combined finite volume-finite element method for nonlinear convection-diffusion problems. Numer. Methods Partial Differential Equations 13 (1997), 163-190. <a href=”http://dx.doi.org/10.1002/(SICI)1098-2426(199703)13:23.0.CO;2-N” target=”_blank”>DOI 10.1002/(SICI)1098-2426(199703)13:23.0.CO;2-N | [17] M. Feistauer, J. Felcman, M. Lukáčová and G. Warnecke: Error estimates of a combined finite volume-finite element method for nonlinear convection-diffusion problems. SIAM J. Numer. Anal. 36 (1999), 1528-1548. · Zbl 0960.65098 [18] M. Feistauer, J. Slavík and P. Stupka: On the convergence of the combined finite volume-finite element method for nonlinear convection-diffusion problems. II. Explicit schemes. Numer. Methods Partial Differential Equations 15 (1999), 215-235. <a href=”http://dx.doi.org/10.1002/(SICI)1098-2426(199903)15:23.0.CO;2-1” target=”_blank”>DOI 10.1002/(SICI)1098-2426(199903)15:23.0.CO;2-1 | [19] J. Felcman: Finite volume solution of the inviscid compressible fluid flow. Z. Angew. Math. Mech. 72 (1992), 513-516. · Zbl 0825.76666 [20] J. Felcman, V. Dolejší: Adaptive methods for the solution of the Euler equations in elements of the blade machines. Z. Angew. Math. Mech. 76 (1996), 301-304. · Zbl 0925.76438 [21] J. Felcman, V. Dolejší and M. Feistauer: Adaptive finite volume method for the numerical solution of the compressible Euler equations. Computational Fluid Dynamics ’94, J. Périaux, S. Wagner, E. H. Hirschel and R. Piva (eds.), John Wiley & Sons, Stuttgart, 1994, pp. 894-901. [22] J. Felcman, G. Warnecke: Adaptive computational methods for gas flow. Proceedings of the Prague Mathematical Conference, K. Segeth (ed.), ICARIS, Prague, 1996, pp. 99-104. · Zbl 0963.76555 [23] J. Fořt, M. Huněk, K. Kozel and M. Vavřincová: Numerical simulation of steady and unsteady flows through plane cascades. Numerical Modeling in Continuum Mechanics II, R. Ranacher, M. Feistauer and K. Kozel (eds.), Faculty of Mathematics and Physics, Charles Univ., Prague, 1995, pp. 95-102. · Zbl 0854.76058 [24] H. Gajewski, K. Gröger and K. Zacharias: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie-Verlag, Berlin, 1974. · Zbl 0289.47029 [25] T. Ikeda: Maximum principle in finite element models for convection-diffusion phenomena. Mathematics Studies 76, Lecture Notes in Numerical and Applied Analysis Vol. 4, North-Holland, Amsterdam-New York-Oxford, 1983. · Zbl 0508.65049 [26] C. Johnson: Finite element methods for convection-diffusion problems. Computing Methods in Engineering and Applied Sciences V., R. Glowinski, J. L. Lions (eds.), North-Holland, Amsterdam, 1981. [27] C. Johnson: Numerical Solution of Partial Differential Equations. Cambridge University Press, Cambridge, 1988. [28] A. Kliková: Finite Volume-Finite Element Solution of Compressible Flow. Doctoral Thesis. Charles University Prague, 2000. [29] A. Kliková, M. Feistauer and J. Felcman: Adaptive methods for problems of fluid dynamics. Software and Algorithms of Numerical Mathematics ’99, J. Holenda, I. Marek (eds.), West-Bohemian University, Pilsen, 1999. [30] D. Kröner: Numerical Schemes for Conservation Laws. Wiley & Teuner, Chichester, 1997. · Zbl 0872.76001 [31] D. Kröner, M. Rokyta: Convergence of upwind finite volume schemes for scalar conservation laws in two dimensions. SIAM J. Numer. Anal. 31 (1994), 324-343. · Zbl 0856.65104 [32] M. Křížek, Qun Lin: On diagonal dominance of stiffness matrices in 3D. East-West J. Numer. Math. 3 (1993), 59-69. · Zbl 0824.65112 [33] M. Křížek, P. Neittaanmäki: Finite Element Approximation of Variational Problems and Applications. Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 50. Longman Scientific & Technical, Harlow, 1990. [34] A. Kufner, O. John and S. Fučík: Function Spaces. Academia, Prague, 1977. [35] J. M. Melenk and C. Schwab: The \(hp\) streamline diffusion finite element method for convection dominated problems in one space dimension. East-West J. Numer. Math. 7 (1999), 31-60. · Zbl 0920.65047 [36] K. W. Morton: Numerical Solution of Convection-Diffusion Problems. Chapman & Hall, London, 1996. · Zbl 0861.65070 [37] K. Ohmori, T. Ushijima: A technique of upstream type applied to a linear nonconforming finite element approximation of convective diffusion equations. RAIRO Anal. Numér. 18 (1984), 309-322. · Zbl 0586.65080 [38] S. Osher, F. Solomon: Upwind difference schemes for hyperbolic systems of conservation laws. Math. Comp. 38 (1982), 339-374. · Zbl 0483.65055 [39] H.-G. Roos, M. Stynes and L. Tobiska: Numerical Methods for Singularly Perturbed Differential Equations. Springer Series in Computational Mathematics, Vol. 24. Springer-Verlag, Berlin, 1996. · Zbl 0844.65075 [40] F. Schieweck, L. Tobiska: A nonconforming finite element method of upstream type applied to the stationary Navier-Stokes equation. RAIRO Modél. Math. Anal. Numér. 23 (1989), 627-647. · Zbl 0681.76032 [41] C. Schwab: \(p\)- and \(hp\)- Finite Element Methods. Theory and Applications in Solid and Fluid Mechanics. Clarendon Press, Oxford, 1998. · Zbl 0910.73003 [42] S. P. Spekreijse: Multigrid Solution of the Steady Euler Equations. Centrum voor Wiskunde en Informatica, Amsterdam, 1987. · Zbl 0643.76068 [43] G. Strang: Variational crimes in the finite element method. The Mathematical Foundations of the Finite Element Method, A. K. Aziz (ed.), Academic Press, New York, 1972, pp. 689-710. · Zbl 0264.65068 [44] M. Š\?astný, P. Šafařík: Experimental analysis data on the transonic flow past a plane turbine cascade. ASME Paper 90-GT-313, New York, 1990. [45] R. Temam: Navier-Stokes Equations. North-Holland, Amsterdam-New York-Oxford, 1979. · Zbl 0454.35073 [46] L. Tobiska: Full and weighted upwind finite element methods. Splines in Numerical Analysis Mathematical Research Volume, Vol. 32, J. W. Schmidt, H. Spath (eds.), Akademie-Verlag, Berlin, 1989. · Zbl 0685.65074 [47] G. Vijayasundaram: Transonic flow simulation using an upstream centered scheme of Godunov in finite elements. J. Comp. Phys. 63 (1986), 416-433. · Zbl 0592.76081 [48] G. Zhou: A local \({L}^2\)-error analysis of the streamline diffusion method for nonstationary convection-diffusion systems. RAIRO Modél. Math. Anal. Numér. 29 (1995), 577-603. · Zbl 0839.65100 [49] G. Zhou, R. Rannacher: Pointwise superconvergence of streamline diffusion finite-element method. Numer. Methods Partial Differential Equations 12 (1996), 123-145. <a href=”http://dx.doi.org/10.1002/(SICI)1098-2426(199601)12:13.0.CO;2-U” target=”_blank”>DOI 10.1002/(SICI)1098-2426(199601)12:13.0.CO;2-U | This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.