zbMATH — the first resource for mathematics

Small polynomials with integer coefficients. (English) Zbl 1091.11009
Let \(E\) be a compact subset of the plane and let \(\| \cdot\| _E\) denote the supremum norm on \(E\). The integer Chebyshev constant \(t_{\mathbb Z}(E)\) is the limit as \(n \to \infty\) of the \(n\)th root of the infimum of \(\| P\| _E\) over all non-zero polynomials of degree at most \(n\) with integer coefficients. The extremal polynomials \(Q_n\) for this problem are called integer Chebyshev polynomials. The interesting case is that of \(\text{ cap}(E) < 1\) since otherwise \(t_{\mathbb Z}(E) = 1\). The author computes the exact value of \(t_{\mathbb Z}(E)\) for a certain class of lemniscates. One of the author’s main results is that the integer Chebyshev polynomials for any infinite subset of the real line must have infinitely many distinct factors (over the integers). The case \(E = [0,1]\) has been much studied. The author improves many of the known results in this case, for example showing that \[ Q_n(x) = (x(1-x))^{[\alpha_1 n]} (2x-1)^{[\alpha_2 n]} (5x^2 - 5x + 1)^{[\alpha_3 n]} R_n(x), \] where \(0.31 \leq \alpha_1 \leq 0.34, 0.11 \leq \alpha_2 \leq 0.14\) and \(0.035 \leq \alpha_3 \leq 0.057\). He obtains the following improvement on previous estimates: \(0.4213 < t_{\mathbb Z}([0,1]) < 0.4232\). The techniques used are from weighted potential theory [E. B. Saff and V. Totik, Logarithmic Potentials with External Fields, Grundlehren der Mathematischen Wissenschaften. 316, Berlin: Springer (1997; Zbl 0881.31001)].

11C08 Polynomials in number theory
Full Text: DOI arXiv
[1] F. Amoroso,Sur le diamètre transfini entier d’un intervalle réel, Ann. Inst. Fourier (Grenoble)40 (1990), 885–911. · Zbl 0713.41004
[2] F. Amoroso,f-transfinite diameter and number theoretic applications, Ann. Inst. Fourier (Grenoble)43 (1993), 1179–1198. · Zbl 0790.41007
[3] E. Aparicio Bernardo,On the asymptotic structure of the polynomials of minimal diophantic deviation from zero, J. Approx. Theory55 (1988), 270–278. · Zbl 0663.41008
[4] M. Barnsley, D. Bessis and P. Moussa,The Diophantine moment problem and the analytic structure in the activity of the ferromagnetic Ising model, J. Math. Phys.20 (1979), 535–546. · Zbl 0454.44006
[5] P. Borwein,Computational Excursions in Analysis and Number Theory, Springer-Verlag, New York, 2002. · Zbl 1020.12001
[6] P. Borwein and T. Erdélyi,Polynomials and Polynomial Inequalities, Springer-Verlag, New York, 1995. · Zbl 0840.26002
[7] P. Borwein and T. Erdélyi,The integer Chebyshev problem, Math. Comp.65 (1996), 661–681. · Zbl 0859.11044
[8] P. B. Borwein, C. G. Pinner and I. E. Pritsker,Monic integer Chebyshev problem, Math. Comp.72 (2003), 1901–1916. · Zbl 1054.11018
[9] J. W. S. Cassels,An Introduction to the Geometry of Numbers, Springer-Verlag, Heidelberg, 1997. · Zbl 0866.11041
[10] P. L. Chebyshev,Collected Works, Vol. 1, Akad. Nauk SSSR, Moscow, 1944. (Russian) · Zbl 0041.48503
[11] G. V. Chudnovsky,Number theoretic applications of polynomials with rational coefficients defined by extremality conditions, inArithmetic and Geometry, Vol. I (M. Artin and J. Tate, eds.), Birkhäuser, Boston, 1983, pp. 61–105.
[12] M. Fekete,Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z.17 (1923), 228–249. · JFM 49.0047.01
[13] M. Fekete and G. Szegö,On algebraic equations with integral coefficients whose roots belong to a given point set, Math. Z.63 (1955) 158–172. · Zbl 0066.27002
[14] Le Baron O. Ferguson,Approximation by Polynomials with Integral Coefficients, Amer. Math. Soc., Providence, R.I., 1980. · Zbl 0441.41003
[15] V. Flammang,Sur la longueur des entiers algébriques totalement positifs, J. Number Theory54 (1995), 60–72. · Zbl 0831.11057
[16] V. Flammang,Sur le diamètre transfini entier d’un intervalle à extrémités rationnelles, Ann. Inst. Fourier (Grenoble)45 (1995), 779–793. · Zbl 0826.41009
[17] V. Flammang, G. Rhin and C. J. Smyth,The integer transfinite diameter of intervals and totally real algebraic integers, J. Théor. Nombres Bordeaux9 (1997), 137–168. · Zbl 0892.11033
[18] G. M. Goluzin,Geometric Theory of Functions of a Complex Variable, Vol. 26 of Translations of Mathematical Monographs, Amer. Math. Soc., Providence, R.I., 1969. · Zbl 0183.07502
[19] D. S. Gorshkov,On the distance from zero on the interval [0, 1] of polynomials with integral coefficients, inProc. of the Third All Union Mathematical Congress (Moscow, 1956), Vol. 4, Akad. Nauk SSSR, Moscow, 1959, pp. 5–7. (Russian)
[20] L. Habsieger and B. Salvy,On integer Chebyshev polynomials, Math. Comp.66 (1997) 763–770. · Zbl 0911.11033
[21] D. Hilbert,Ein Beitrag zur Theorie des Legendreschen Polynoms, Acta Math.18 (1894), 155–159. · JFM 25.0817.02
[22] B. S. Kashin,Algebraic polynomials with integer coefficients deviating little from zero on an interval, Math. Notes50 (1991), 921–927. · Zbl 0782.11007
[23] L. Kronecker,Zwei Sätze über Gleichungen mit ganzzahligen Koeffizienten, J. Reine Angew. Math.53 (1857), 173–175. · ERAM 053.1389cj
[24] H. L. Montgomery,Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, GBMS, Vol. 84, Amer. Math. Soc., Providence, R. I., 1994. · Zbl 0814.11001
[25] M. Nair,A new method in elementary prime number theory, J. London Math. Soc. (2)25 (1982), 385–391. · Zbl 0476.10036
[26] C. Pisot,Über ganzwertige ganze Funktionen, Jahresber. Deutsch. Math.-Verein.52 (1942), 95–102. · Zbl 0027.05502
[27] C. Pisot,Sur les fonctions arithmétiques analytiques à croissance exponentielle, C. R. Acad. Sci. Paris,222 (1946), 988–990. · Zbl 0060.21501
[28] C. Pisot,Sur les fonctions analytiques arithmétiques et presque arithmétiques, C. R. Acad. Sci. Paris222 (1946), 1027–1028. · Zbl 0060.21502
[29] G. Pólya,Über ganzwertige ganze Funktionen, Rend. Circ. Mat. Palermo40 (1915), 1–16. · JFM 45.0655.02
[30] G. Pólya,Sur les séries entières à coefficients entiers, Proc. London Math. Soc.21 (1922), 22–38. · JFM 48.1209.01
[31] G. Pólya,Über gewisse notwendige Determinantenkriterien für die Fortsetzbarkeit einer Potenzreihe, Math. Ann.99 (1928), 687–706. · JFM 54.0340.07
[32] I. E. Pritsker,Chebyshev polynomials with integer coefficients, inAnalytic and Geometric Inequalities and Applications (Th. M. Rassias and H. M. Srivastava, eds.), Kluwer Acad. Publ., Dordrecht, 1999, pp. 335–348. · Zbl 0980.30006
[33] I. E. Pritsker,The Gelfond-Schnirelman method in prime number theory, Canad. J. Math. (to appear); Available electronically at http://www.math.okstate.edu/\(\sim\)igor/gsm.pdf · Zbl 1153.11329
[34] T. Ransford,Potential Theory in the Complex Plane, Cambridge University Press, Cambridge, 1995. · Zbl 0828.31001
[35] T. J. Rivlin,Chebyshev Polynomials, John Wiley & Sons, New York, 1990.
[36] R. M. Robinson,Intervals containing infinitely many sets of conjugate algebraic integers, inStudies in Mathematical Analysis and Related Topics: Essays in Honor of George Pólya (H. Chernoff, M. M. Schiffer, H. Solomon and G. Szegö, eds.), Stanford, 1962, pp. 305–315.
[37] R. M. Robinson,Conjugate algebraic integers in real point sets, Math. Z.84 (1964), 415–427. · Zbl 0126.02902
[38] R. M. Robinson,An extension of Pólya’s theorem on power series with integer coefficients, Trans. Amer. Math. Soc.130 (1968), 532–543. · Zbl 0159.36203
[39] R. M. Robinson,Conjugate algebraic integers on a circle, Math. Z.110 (1969), 41–51. · Zbl 0179.07701
[40] R. M. Robinson,Integer valued entire functions, Trans. Amer. Math. Soc.153 (1971), 451–468. · Zbl 0212.42201
[41] E. B. Saff and V. Totik,Logarithmic Potentials with External Fields, Springer-Verlag, Berlin, 1997. · Zbl 0881.31001
[42] I. Schur,Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z.1 (1918), 377–402. · JFM 46.0128.03
[43] C. L. Siegel,The trace of totally positive and real algebraic integers, Ann. of Math. (2)46 (1945), 302–312. · Zbl 0063.07009
[44] C.J. Smyth,Totally positive algebraic integers of small trace, Ann. Inst. Fourier (Grenoble)33 (1984), 1–28. · Zbl 0534.12002
[45] G. Szegö,Bemerkungen zu einer Arbeit von Herrn M. Fekete: Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z.21 (1924), 203–208. · JFM 50.0044.02
[46] R. M. Trigub,Approximation of functions with Diophantine conditions by polynomials with integral coefficients, inMetric Questions of the Theory of Functions and Mappings, No. 2, Naukova Dumka, Kiev, 1971, pp. 267–333. (Russian)
[47] M. Tsuji,Potential Theory in Modern Function Theory, Maruzen, Tokyo, 1959. · Zbl 0087.28401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.