zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Chaotic synchronization with gap junction of multi-neurons in external electrical stimulation. (English) Zbl 1091.34027
Consider a coupled system of the form $$ \dot u_j = f(u_j,t)+C\sum_{i=1,i\ne j}^n (u_i-u_j), \quad j=1,2,\dots $$ The authors give sufficient conditions for complete synchronization, i.e., stability of the invariant subspace $u_1=u_2=\cdots=u_n$. Here, $C$ is the coupling matrix and the uncoupled dynamics is described by the following forced oscillator $$ \frac{dX}{dt} = X(X-1)(1-rX)-Y+I_0(t), \quad \frac{dY}{dt} = bX, $$ with some parameters $r$, $b$, and periodic force $I_0(t)$.

34D05Asymptotic stability of ODE
34C60Qualitative investigation and simulation of models (ODE)
34C15Nonlinear oscillations, coupled oscillators (ODE)
34C30Manifolds of solutions of ODE (MSC2000)
Full Text: DOI
[1] Bennett, M. V. L.; Verselis, V. K.: Biophysics of gap junction. Semin cell biol 3, 29-47 (1992)
[2] Baigent, S.; Stark, J.; Warner, A.: Convergent dynamics of two cells coupled by a nonlinear gap junction. Nonlinear anal 47, 257-268 (2001) · Zbl 1042.92503
[3] Baigent, S.; Stark, J.; Warner, A.: Modeling the effect of gap junction nonlinearitied in systems of coupled cells. J theor biol 186, 223-239 (1997)
[4] Vogel, R.; Weingart, R.: The electrophysiology of gap junctions and gap junction channels and their mathematical modeling. Biol cell 94, 501-510 (2002)
[5] Baigent, S.: Cells coupled by voltage-dependent gap junctions: the asymptotic dynamical limit. Biosystems 68, 213-222 (2003)
[6] Dermietzel, Rolf: Gap junction wiring: a ’new’ principle in cell-cell communication in the nervous system?. Brain res rev 26, 176-183 (1998)
[7] Chen, G.; Dong, X.: From chaos to order: methodologies, perspectives and applictations. (1998) · Zbl 0908.93005
[8] Matsumoto, G.; Aihara, K.; Utsunomiya, T.: A spatially ordered pacemaker observed in squid giant axons. J phys soc Japan 51, 942 (1982)
[9] Aihara, K.; Matsumoto, G.; Ichiwaka, M.: An alternating periodic-chaotic sequence observed in neural oscillations. Phys lett A 111, 251-255 (1985)
[10] Shoji, F. F.; Lee, H. -H.: On a response characteristics in the Hodgkin-Huxley model and muscle fiber to a periodic stimulation. Ieee 3, 2035-2041 (2000)
[11] Thompson, C. J.; Bardos, D. C.; Yang, Y. S.; Joyner, K. H.: Nonlinear cable models for cells exposed to electric fields I. General theory and space-clamped solutions. Chaos, solutions & fractals 10, 1825-1842 (1999) · Zbl 0967.35139
[12] Pecora, Lm.; Carroll: Synchronization in chaotic systems. Phys rev lett 64, 821-824 (1990) · Zbl 0938.37019
[13] Pecora, Lm.; Carroll: Driving systems with chaotic signal. Phys rev A 44, 2374-2383 (1991)
[14] Chiu, C.; Lin, W.; Peng, C.: Asymptotic synchronization in lattices of coupled nonlinear Lorenz equations. Int J bifurc chaos 10, 2717-2728 (2000) · Zbl 0983.37018
[15] Wang, C.; Ge, S. S.: Adaptive synchronization of uncertain chaotic systems via backstepping design. Chaos, solitons & fractals 12, 1199-1206 (2001) · Zbl 1015.37052
[16] Chua, L. O.; Itah, M.; Kosarev, L.; Eckert, K.: Chaos synchronization in Chua’s circuits. J cricuits syst comput 3, 93-108 (1993)
[17] Agiza, H. N.; Yassen, M. T.: Synchronization of Rössler and Chen chaotic dynamical systems using active control. Phys lett A 278, 191-197 (2001) · Zbl 0972.37019
[18] Hu, G.; Xiao, J.; Zheng, Z.: Chaos control. (2000)
[19] Pikovsky, A.; Rosenblum, M.; Kurths, J.: Synchronization: a universal concept in nonlinear sciences. (2001) · Zbl 0993.37002
[20] Mirollo, R. E.; Strogatz, S. H.: Synchronization of pulse-coupled biological oscillators. SIAM J appl math 50, 1645-1662 (1990) · Zbl 0712.92006
[21] Nischwitz, A.; Glüknder, H.: Local lateral inhibition--a key to spike synchronization. Biol cybernet 73, 389 (1995) · Zbl 0850.92012
[22] Yanchuk, S.; Maistrenko, Y.; Lading, B.; Mosekilde, E.: Partial synchronization in a system of coupled logistic maps. Int J bifurc chaos 10, 1051-1066 (2000) · Zbl 1090.37530
[23] Shuai, J. -W.; Durand, D. M.: Phase synchronization in two coupled chaotic neurons. Phys lett A 264, 289-297 (1999) · Zbl 0949.37015
[24] Jiang, W.; Bin, D.; Tsang, K. M.: Chaotic synchronization of neurons coupled with gap junction under external electrical stimulation. Chaos, solitons & fractals 22, 469-476 (2004) · Zbl 1060.93525