Cai, T. Tony; Low, Mark G. Adaptive confidence balls. (English) Zbl 1091.62037 Ann. Stat. 34, No. 1, 202-228 (2006). Summary: Adaptive confidence balls are constructed for individual resolution levels as well as the entire mean vector in a multiresolution framework. Finite sample lower bounds are given for the minimum expected squared radius for confidence balls with a prespecified confidence level. The confidence balls are centered on adaptive estimators based on special local block thresholding rules. The radius is derived from an analysis of the loss of this adaptive estimator. In addition, adaptive honest confidence balls are constructed which have guaranteed coverage probability over all of \(\mathbb R^N\) and expected squared radius adapting over a maximum range of Besov bodies. Cited in 39 Documents MSC: 62G15 Nonparametric tolerance and confidence regions 62H12 Estimation in multivariate analysis 62F35 Robustness and adaptive procedures (parametric inference) Keywords:adaptive confidence balls; Besov body; block thresholding; coverage probability; expected squared radius; loss estimation × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Baraud, Y. (2004). Confidence balls in Gaussian regression. Ann. Statist. 32 528–551. · Zbl 1093.62051 · doi:10.1214/009053604000000085 [2] Beran, R. (1996). Confidence sets centered at \(C_p\)-estimators. Ann. Inst. Statist. Math. 48 1–15. · Zbl 0857.62025 · doi:10.1007/BF00049285 [3] Beran, R. and Dümbgen, L. (1998). Modulation of estimators and confidence sets. Ann. Statist. 26 1826–1856. · Zbl 1073.62538 · doi:10.1214/aos/1024691359 [4] Cai, T. (1999). Adaptive wavelet estimation: A block thresholding and oracle inequality approach. Ann. Statist. 27 898–924. · Zbl 0954.62047 · doi:10.1214/aos/1018031262 [5] Cai, T. (2002). On block thresholding in wavelet regression: Adaptivity, block size, and threshold level. Statist. Sinica 12 1241–1273. · Zbl 1004.62036 [6] Cai, T. and Low, M. (2004). Adaptive confidence balls. Technical report, Dept. Statistics, Univ. Pennsylvania. · Zbl 1091.62037 [7] Donoho, D. L. and Johnstone, I. M. (1998). Minimax estimation via wavelet shrinkage. Ann. Statist. 26 879–921. · Zbl 0935.62041 · doi:10.1214/aos/1024691081 [8] Genovese, C. R. and Wasserman, L. (2005). Confidence sets for nonparametric wavelet regression. Ann. Statist. 33 698–729. · Zbl 1068.62057 · doi:10.1214/009053605000000011 [9] Hoffmann, M. and Lepski, O. (2002). Random rates in anisotropic regression (with discussion). Ann. Statist. 30 325–396. · Zbl 1012.62042 · doi:10.1214/aos/1021379858 [10] Juditsky, A. and Lambert-Lacroix, S. (2003). Nonparametric confidence set estimation. Math. Methods Statist. 12 410–428. [11] Li, K.-C. (1989). Honest confidence regions for nonparametric regression. Ann. Statist. 17 1001–1008. JSTOR: · Zbl 0681.62047 · doi:10.1214/aos/1176347253 [12] Robins, J. and van der Vaart, A. (2006). Adaptive nonparametric confidence sets. Ann. Statist. 34 229–253. · Zbl 1091.62039 · doi:10.1214/009053605000000877 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.