×

Adaptive nonparametric confidence sets. (English) Zbl 1091.62039

Summary: We construct honest confidence regions for a Hilbert space-valued parameter in various statistical models. The confidence sets can be centered at arbitrary adaptive estimators, and have diameter which adapts optimally to a given selection of models. The latter adaptation is necessarily limited in scope. We review the notion of adaptive confidence regions, and relate the optimal rates of the diameter of adaptive confidence regions to the minimax rates for testing and estimation. Applications include the finite normal mean model, the white noise model, density estimation and regression with random design.

MSC:

62G15 Nonparametric tolerance and confidence regions
62G20 Asymptotic properties of nonparametric inference
62G07 Density estimation
46N30 Applications of functional analysis in probability theory and statistics
62G08 Nonparametric regression and quantile regression

References:

[1] Baraud, Y. (2004). Confidence balls in Gaussian regression. Ann. Statist. 32 528–551. · Zbl 1093.62051 · doi:10.1214/009053604000000085
[2] Barron, A., Birgé, L. and Massart, P. (1999). Risk bounds for model selection via penalization. Probab. Theory Related Fields 113 301–413. · Zbl 0946.62036 · doi:10.1007/s004400050210
[3] Barron, A. R. and Cover, T. M. (1991). Minimum complexity density estimation. IEEE Trans. Inform. Theory 37 1034–1054. · Zbl 0743.62003 · doi:10.1109/18.86996
[4] Beran, R. (2000). REACT scatterplot smoothers: Superefficiency through basis economy. J. Amer. Statist. Assoc. 95 155–171. · Zbl 1013.62073 · doi:10.2307/2669535
[5] Beran, R. and Dümbgen, L. (1998). Modulation of estimators and confidence sets. Ann. Statist. 26 1826–1856. · Zbl 1073.62538 · doi:10.1214/aos/1024691359
[6] Bickel, P. J. and Ritov, Y. (1988). Estimating integrated squared density derivatives: Sharp best order of convergence estimates. Sankhyā Ser. A 50 381–393. · Zbl 0676.62037
[7] Birgé, L. (2002). Discussion of “Random rates in anisotropic regression,” by M. Hoffmann and O. Lepski. Ann. Statist. 30 359–363. · Zbl 1012.62042 · doi:10.1214/aos/1021379858
[8] Birgé, L. and Massart, P. (2001). Gaussian model selection. J. Eur. Math. Soc. 3 203–268. · Zbl 1037.62001 · doi:10.1007/s100970100031
[9] Bretagnolle, J. and Huber, C. (1979). Estimation des densités: Risque minimax. Z. Wahrsch. Verw. Gebiete 47 119–137. · Zbl 0413.62024 · doi:10.1007/BF00535278
[10] Brown, L. D., Carter, A. V., Low, M. G. and Zhang, C.-H. (2004). Equivalence theory for density estimation, Poisson processes and Gaussian white noise with drift. Ann. Statist. 32 2074–2097. · Zbl 1062.62083 · doi:10.1214/009053604000000012
[11] Cai, T. and Low, M. (2006). Adaptive confidence balls. Ann. Statist. 34 202–228. · Zbl 1091.62037 · doi:10.1214/009053606000000146
[12] Donoho, D. L. and Johnstone, I. M. (1995). Adapting to unknown smoothness via wavelet shrinkage. J. Amer. Statist. Assoc. 90 1200–1224. · Zbl 0869.62024 · doi:10.2307/2291512
[13] Donoho, D. L. and Johnstone, I. M. (1994). Ideal spatial adaptation via wavelet shrinkage. Biometrika 81 425–455. · Zbl 0815.62019 · doi:10.1093/biomet/81.3.425
[14] Donoho, D. L., Johnstone, I. M., Kerkyacharian, G. and Picard, D. (1995). Wavelet shrinkage: Asymptopia? (with discussion). J. Roy. Statist. Soc. Ser. B 57 301–369. · Zbl 0827.62035
[15] Donoho, D. L., Johnstone, I. M., Kerkyacharian, G. and Picard, D. (1996). Density estimation by wavelet thresholding. Ann. Statist. 24 508–539. · Zbl 0860.62032 · doi:10.1214/aos/1032894451
[16] Efromovich, S. Yu. and Pinsker, M. S. (1984). Learning algorithm for nonparametric filtering. Autom. Remote Control 11 1434–1440. · Zbl 0637.93069
[17] Fan, J. (1991). On the estimation of quadratic functionals. Ann. Statist. 19 1273–1294. JSTOR: · Zbl 0729.62076
[18] Genovese, C. R. and Wasserman, L. (2005). Confidence sets for nonparametric wavelet regression. Ann. Statist. 33 698–729. · Zbl 1068.62057 · doi:10.1214/009053605000000011
[19] Golubev, G. K. (1987). Adaptive asymptotically minimax estimates of smooth signals. Problems Inform. Transmission 23 57–67. · Zbl 0636.94005
[20] Hoffmann, M. and Lepski, O. (2002). Random rates in anisotropic regression (with discussion). Ann. Statist. 30 325–396. · Zbl 1012.62042 · doi:10.1214/aos/1021379858
[21] Ibragimov, I. A. and Khasminskii, R. Z. (1980). Asymptotic properties of some nonparametric estimates in Gaussian white noise. Proc. Third Summer School on Probab. Theory and Math. Statist. Varna 1978 . · Zbl 0488.62063
[22] Ibragimov, I. A. and Khasminskii, R. Z. (1981). Statistical Estimation . Asymptotic Theory . Springer, Berlin. · Zbl 0467.62026
[23] Ingster, Yu. I. (1993). Asymptotically minimax hypothesis testing for nonparametric alternatives. I, II, III. Math. Methods Statist. 2 85–114, 171–189, 249–268., Mathematical Reviews (MathSciNet): Mathematical Reviews (MathSciNet): MR1259685 · Zbl 0798.62059
[24] Ingster, Yu. I. and Suslina, I. A. (2003). Nonparametric Goodness-of-Fit Testing Under Gaussian Models . Lecture Notes in Statist. 168 . Springer, New York. · Zbl 1013.62049
[25] Juditsky, A. and Lambert-Lacroix, S. (2003). Nonparametric confidence set estimation. Math. Methods Statist. 12 410–428.
[26] Laurent, B. (1996). Efficient estimation of integral functionals of a density. Ann. Statist. 24 659–681. · Zbl 0859.62038 · doi:10.1214/aos/1032894458
[27] Laurent, B. (1997). Estimation of integral functionals of a density and its derivatives. Bernoulli 3 181–211. · Zbl 0872.62044 · doi:10.2307/3318586
[28] Laurent, B. and Massart, P. (2000). Adaptive estimation of a quadratic functional by model selection. Ann. Statist. 28 1302–1338. · Zbl 1105.62328 · doi:10.1214/aos/1015957395
[29] Lepskii, O. (1990). On a problem of adaptive estimation in Gaussian white noise. Theory Probab. Appl. 35 454–466. · Zbl 0745.62083
[30] Lepskii, O. (1991). Asymptotically minimax adaptive estimation. I. Upper bounds. Optimally adaptive estimates. Theory Probab. Appl. 36 682–697. · Zbl 0776.62039 · doi:10.1137/1136085
[31] Lepskii, O. (1992). Asymptotically minimax adaptive estimation. II. Schemes without optimal adaptation. Adaptive estimates. Theory Probab. Appl. 37 433–448. · Zbl 0761.62115
[32] Li, K.-C. (1989). Honest confidence regions for nonparametric regression. Ann. Statist. 17 1001–1008. JSTOR: · Zbl 0681.62047 · doi:10.1214/aos/1176347253
[33] Mikosch, T. (1993). A weak invariance principle for weighted \(U\)-statistics with varying kernels. J. Multivariate Anal. 47 82–102. · Zbl 0788.60045 · doi:10.1006/jmva.1993.1072
[34] Nussbaum, M. (1985). Spline smoothing in regression models and asymptotic efficiency in \(L_2\). Ann. Statist. 13 984–997. JSTOR: · Zbl 0596.62052 · doi:10.1214/aos/1176349651
[35] Nussbaum, M. (1996). Asymptotic equivalence of density estimation and Gaussian white noise. Ann. Statist. 24 2399–2430. · Zbl 0867.62035 · doi:10.1214/aos/1032181160
[36] Pinsker, M. (1980). Optimal filtering of square-integrable signals in Gaussian noise. Problems Inform. Transmission 16 120–133. · Zbl 0452.94003
[37] Stone, C. J. (1984). An asymptotically optimal window selection rule for kernel density estimates. Ann. Statist. 12 1285–1297. JSTOR: · Zbl 0599.62052 · doi:10.1214/aos/1176346792
[38] Tsybakov, A. (2004). Introduction à l’estimation non-paramétrique . Springer, Berlin. · Zbl 1029.62034
[39] van der Vaart, A. W. (1998). Asymptotic Statistics . Cambridge Univ. Press. · Zbl 0910.62001 · doi:10.1017/CBO9780511802256
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.