Einmahl, John H. J.; Lin, Tao Asymptotic normality of extreme value estimators on \(C[0,1]\). (English) Zbl 1091.62041 Ann. Stat. 34, No. 1, 469-492 (2006). Summary: Consider \(n\) i.i.d. random elements on \(C[0,1]\). We show that, under an appropriate strengthening of the domain of attraction condition, natural estimators of the extreme-value index, which is now a continuous function, and the normalizing functions have a Gaussian process as limiting distribution. A key tool is the weak convergence of a weighted tail empirical process, which makes it possible to obtain the results uniformly on \([0,1]\). Detailed examples are also presented. Cited in 12 Documents MSC: 62G32 Statistics of extreme values; tail inference 62F05 Asymptotic properties of parametric tests 62G20 Asymptotic properties of nonparametric inference 62G05 Nonparametric estimation 60G70 Extreme value theory; extremal stochastic processes 60F17 Functional limit theorems; invariance principles Keywords:estimation; extreme value index; infinite-dimensional extremes; weak convergence on \(C[0,1]\) × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Balkema, A. A. and de Haan, L. (1988). Almost sure continuity of stable moving average processes with index less than one. Ann. Probab. 16 333–343. JSTOR: · Zbl 0634.60037 · doi:10.1214/aop/1176991905 [2] Bingham, N., Goldie, C. and Teugels, J. (1987). Regular Variation. Cambridge Univ. Press. · Zbl 0617.26001 [3] Cheng, S. and Jiang, C. (2001). The Edgeworth expansion for distributions of extreme values. Sci. China Ser. A 44 427–437. · Zbl 1001.62009 · doi:10.1007/BF02881879 [4] de Haan, L. and Lin, T. (2001). On convergence toward an extreme value distribution in \(C[0, 1]\). Ann. Probab. 29 467–483. · Zbl 1010.62016 · doi:10.1214/aop/1008956340 [5] de Haan, L. and Lin, T. (2003). Weak consistency of extreme value estimators in \(C[0, 1]\). Ann. Statist. 31 1996–2012. · Zbl 1055.62059 · doi:10.1214/aos/1074290334 [6] de Haan, L. and Pereira, T. T. (2006). Spatial extremes: Models for the stationary case. Ann. Statist. 34 146–168. · Zbl 1104.60021 · doi:10.1214/009053605000000886 [7] de Haan, L. and Sinha, A. K. (1999). Estimating the probability of a rare event. Ann. Statist. 27 732–759. · Zbl 1105.62344 · doi:10.1214/aos/1018031214 [8] de Haan, L. and Stadtmüller, U. (1996). Generalized regular variation of second order. J. Austral. Math. Soc. Ser. A 61 381–395. · Zbl 0878.26002 [9] Dekkers, A. L. M., Einmahl, J. H. J. and de Haan, L. (1989). A moment estimator for the index of an extreme-value distribution. Ann. Statist. 17 1833–1855. JSTOR: · Zbl 0701.62029 · doi:10.1214/aos/1176347397 [10] Drees, H. (1998). On smooth statistical tail functionals. Scand. J. Statist. 25 187–210. · Zbl 0923.62032 · doi:10.1111/1467-9469.00097 [11] Giné, E., Hahn, M. and Vatan, P. (1990). Max-infinitely divisible and max-stable sample continuous processes. Probab. Theory Related Fields 87 139–165. · Zbl 0688.60031 · doi:10.1007/BF01198427 [12] Gomes, M. I., de Haan, L. and Pestana, D. (2004). Joint exceedances of the ARCH process. J. Appl. Probab. 41 919–926. · Zbl 1065.60054 · doi:10.1239/jap/1091543434 [13] van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes. With Applications to Statistics. Springer, New York. · Zbl 0862.60002 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.