Parameter estimation and subset selection for separable lower triangular bilinear models. (English) Zbl 1091.62091

The time series \(X(t)\) is described by the separable lower triangular bilinear model: \[ X(t)+\sum_{m=1}^p a_m X(t-m) =\varepsilon(t)+\sum_{m=1}^q b_m\varepsilon(t-m)+ \sum_{m=1}^r c_m\varepsilon(t-m) \left[ \sum_{m=0}^s d_n X(t-m-n) \right] \] with i.i.d. Gaussian \(\varepsilon(t)\). An EM algorithm with non-informative prior is proposed for estimation of parameters. Akaike’s and Bayesian information criteria are considered for selection of the optimal subset model. Results of simulations and application to weekly egg prices at a German agricultural market are presented.


62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62F10 Point estimation
Full Text: DOI


[1] Box G. E. P., Time Series Analysis: Forecasting and Control (1976) · Zbl 0363.62069
[2] Chen C. W. S., Communications in Statistics - Theory and Methods 21 pp 1725– (1992)
[3] Fan J., Nonlinear Time Series: Nonparametric and Parametric Methods (2003) · Zbl 1014.62103
[4] Finkenstadt B., Nonlinear Dynamics in Economics (1995)
[5] Gabr M. M., Journal of Time Series Analysis 9 pp 385– (1988) · Zbl 0635.62090
[6] Guegan D., Statistica Sinica 2 pp 157– (1992)
[7] Hillmer S. C., Journal of American Statistical Association 74 pp 652– (1979)
[8] Kim W. K., Journal of Time Series Analysis 11 pp 215– (1990)
[9] Liu S. I., Communications in Statistics-Theory and Methods 14 pp 2549– (1985) · Zbl 0584.62152
[10] Sesay S. A. O., Journal of Time Series Analysis 9 pp 385– (1988)
[11] Sesay S. A. O., Journal of Time Series Analysis 12 pp 159– (1991) · Zbl 0714.62081
[12] Shaarawy S., Communications in Statistics - Theory and Methods 14 pp 2531– (1985)
[13] Subba Rao T., Journal of Royal Statistical Society 43 pp 244– (1981)
[14] Subba Rao T., Handbook of Statistics pp 293– (1983)
[15] Subba Rao T., An Introduction to Bispectral Analysis and Bilinear Time Series Models. Lecture Notes in Statistics (1984) · Zbl 0543.62074
[16] Terdik G., Proceedings of the Royal Society of London 400 pp 315– (1985)
[17] Terdik G., Journal of Applied Probability 26 pp 274– (1989)
[18] DOI: 10.1239/jap/1077134680 · Zbl 1045.62091
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.