zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fast construction of the Fejér and Clenshaw-Curtis quadrature rules. (English) Zbl 1091.65028
Summary: We present an elegant algorithm for stably and quickly generating the weights of Fejér’s quadrature rules and of the Clenshaw-Curtis rule. The weights for an arbitrary number of nodes are obtained as the discrete Fourier transform of an explicitly defined vector of rational or algebraic numbers. Since these rules have the capability of forming nested families, some of them have gained renewed interest in connection with quadrature over multi-dimensional regions.

65D32Quadrature and cubature formulas (numerical methods)
41A55Approximate quadratures
Full Text: DOI
[1] H.-J. Bungartz and M. Griebel, Sparse grids, Acta Numer., 13 (2004), pp. 1--123. · Zbl 1118.65388
[2] P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, 2nd edn., Academic Press, San Diego, 612 pp. · Zbl 1139.65016
[3] S. Elhay and J. Kautsky, Algorithm 655 -- IQPACK: FORTRAN subroutines for the weights of interpolatory quadratures, ACM Trans. Math. Softw., 13 (1987), pp. 399--415. · Zbl 0636.65015
[4] L. Fejér, Mechanische Quadraturen mit positiven Cotesschen Zahlen, Math. Z., 37 (1933), pp. 287--309.
[5] W. Gautschi, Numerical quadrature in the presence of a singularity, SIAM J. Numer. Anal., 4 (1967), pp. 357--362. · Zbl 0279.65024
[6] W. M. Gentleman, Implementing Clenshaw--Curtis quadrature, Commun. ACM, 15 (1972), pp. 337--346. Algorithm 424 (Fortran code), ibid., pp. 353--355. · Zbl 0234.65024
[7] J. Kautsky and S. Elhay, Calculation of the weights of interpolatory quadratures, Numer. Math., 40 (1982), pp. 407--422. · Zbl 0487.65014
[8] A. S. Kronrod, Nodes and Weights of Quadrature Formulas, Consultants Bureau, New York, 1965. · Zbl 0154.18501
[9] T. N. L. Patterson, The optimum addition of points to quadrature formulae, Math. Comput., 22 (1968), pp. 847--856. Errata, Math. Comput., 23 (1969), p. 892. · Zbl 0172.19304
[10] K. Petras, On the Smolyak cubature error for analytic functions, Adv. Comput. Math., 12 (2000), pp. 71--93. · Zbl 0947.65024
[11] K. Petras, Smolyak cubature of given polynomial degree with few nodes for increasing dimension, Numer. Math., 93 (2003), pp. 729--753. · Zbl 1024.65023
[12] S. A. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of functions, Sov. Math. Dokl., 4 (1963), pp. 240--243. · Zbl 0202.39901
[13] G. von Winckel, Fast Clenshaw--Curtis Quadrature, The Mathworks Central File Exchange, Feb. 2005. URL http://www.mathworks.com/matlabcentral/files/6911/clencurt.m