Zhu, Lei The generic finiteness of the \(m\)-canonical map for 3-folds of general type. (English) Zbl 1092.14049 Osaka J. Math. 42, No. 4, 873-884 (2005). Let \(X\) be a projective minimal 3-fold of general type with only \(\mathbb{Q}\)-factorial terminal singularities. The author shows that if \(P_g(X)\geq 5\), then the \(3\)-canonical map is generically finite and if \(P_g(X)\geq 2\) and \(q(X)\geq 3\) then the \(m\)-canonical map is generically finite for \(m\geq 3\). Reviewer: Christopher Hacon (Salt Lake City) Cited in 2 Documents MSC: 14J30 \(3\)-folds 14E05 Rational and birational maps Keywords:3-folds; pluricanonical maps PDF BibTeX XML Cite \textit{L. Zhu}, Osaka J. Math. 42, No. 4, 873--884 (2005; Zbl 1092.14049) OpenURL