zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A new regularity criterion for weak solutions to the Navier-Stokes equations. (English) Zbl 1092.35081
A new regularity criterion for weak solutions to the 3D Navier-Stokes equations is obtained. The author shows that if any one component of the velocity field belongs to $L^\alpha ([0,T); L^\gamma (\mathbb{R}^3 ))$ with $\frac{2}{\alpha} + \frac {3} {\gamma} \leq \frac{1}{2}$, $6< \gamma \leq \infty $, then the weak solution actually is regular and unique.

MSC:
35Q30Stokes and Navier-Stokes equations
76D03Existence, uniqueness, and regularity theory
76D05Navier-Stokes equations (fluid dynamics)
35B45A priori estimates for solutions of PDE
WorldCat.org
Full Text: DOI
References:
[1] Da Veiga, H. Beirão: A new regularity class for the Navier -- Stokes equations in rn. Chinese ann. Math. 16, 407-412 (1995)
[2] Da Veiga, H. Beirão: A sufficient condition on the pressure for the regularity of weak solutions to the Navier -- Stokes equations. J. math. Fluid mech. 2, 99-106 (2000) · Zbl 0970.35105
[3] Da Veiga, H. Beirao: On the smoothness of a class of weak solutions to the Navier -- Stokes equations. J. math. Fluid mech. 2, No. 4, 315-323 (2000) · Zbl 0972.35089
[4] Berselli, L. C.; Galdi, G. P.: Regularity criteria involving the pressure for the weak solutions to the Navier -- Stokes equations. Proc. amer. Math. soc. 130, No. 12, 3585-3595 (2002) · Zbl 1075.35031
[5] Caffarelli, L.; Kohn, R.; Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier -- Stokes equations. Comm. pure appl. Math. 35, 771-831 (1982) · Zbl 0509.35067
[6] Chae, D.; Choe, H. J.: On the regularity criterion for the solutions of the Navier -- Stokes equations. Electron. J. Differential equations 1999, No. 5, 1-7 (1999) · Zbl 0923.35117
[7] Chae, D.; Lee, J.: Regularity criterion in terms of pressure for the Navier -- Stokes equations. Nonlinear anal. Ser. A: theory methods 46, No. 5, 727-735 (2001) · Zbl 1007.35064
[8] P. Constantin, C. Foias, Navier -- Stokes Equations, Chicago Lectures in Mathematics Series, 1988
[9] Giga, Y.: Solutions for semilinear parabolic equations in lp and regularity of weak solutions of the Navier -- Stokes system. J. differential equations 62, No. 2, 186-212 (1986) · Zbl 0577.35058
[10] He, C.: Regularity for solutions to the Navier -- Stokes equations with one velocity component regular. Electron. J. Differential equations 29, 1-13 (2002) · Zbl 0993.35072
[11] Hopf, E.: Über die anfangswertaufgabe für die hydrodynamischen grundgleichungen. Math. nachr. 4, 213-231 (1951) · Zbl 0042.10604
[12] Kozono, H.; Sohr, H.: Regularity criterion on weak solutions to the Navier -- Stokes equations. Adv. differential equations 2, 535-554 (1997) · Zbl 1023.35523
[13] Kozono, H.; Taniuchi, Y.: Bilinear estimates in BMO and the Navier -- Stokes equations. Math. Z. 235, 173-194 (2000) · Zbl 0970.35099
[14] Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta math. 63, 193-248 (1934)
[15] J. Neustupa, A. Novotný, P. Penel, An interior regularity of a weak solution to the Navier -- Stokes equations in dependence on one component of velocity, Preprint, 2001
[16] Scheffer, V.: Partial regularity of solutions to the Navier -- Stokes equations. Pacific J. Math. 66, 535-552 (1976) · Zbl 0325.35064
[17] Serrin, J.: On the interior regularity of weak solutions of the Navier -- Stokes equations. Arch. rational mech. Anal. 9, 187-195 (1962) · Zbl 0106.18302
[18] Sohr, H.: A regularity class for the Navier -- Stokes equations in Lorentz spaces. J. evolution equations 1, 441-467 (2001) · Zbl 1007.35051
[19] H. Sohr, A generalization of Serrin’s regularity criterion for the Navier -- Stokes equations, Quaderni Di Math. (2002), in press · Zbl 1062.35075
[20] Struwe, M.: On partial regularity results for the Navier -- Stokes equations. Comm. pure appl. Math. 41, 437-458 (1988) · Zbl 0632.76034
[21] Temam, R.: Navier -- Stokes equations, theory and numerical analysis. (2001) · Zbl 0981.35001
[22] Tian, G.; Xin, Z.: Gradient estimation on Navier -- Stokes equations. Comm. anal. Geo. 7, 221-257 (1999) · Zbl 0939.35139
[23] Von Wahl, W.: Regularity of weak solutions of the Navier -- Stokes equations. Proc. symposia in pure mathematics 45, 497-503 (1986)
[24] Von Wahl, W.: The equations of Navier -- Stokes and abstract parabolic equations. Aspects of mathematics 8 (1985)
[25] Zhou, Y.: A new regularity criterion for the Navier -- Stokes equations in terms of the gradient of one velocity component. Methods appl. Anal. 9, 563-578 (2002) · Zbl 1166.35359
[26] Zhou, Y.: Regularity criteria in terms of pressure for the 3-D Navier -- Stokes equations in a generic domain. Math. ann. 328, No. 1 -- 2, 173-192 (2004) · Zbl 1054.35062
[27] Y. Zhou, Regularity criteria for Navier -- Stokes equations in term of pressure in R3, Proc. Amer. Math. Soc. (2005), in press