zbMATH — the first resource for mathematics

Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces. (English) Zbl 1092.35099
The authors prove that the nonlinear Schrödinger equation is uniformly well-posed on the two-dimensional sphere (or more generally on Zoll surfaces) in the Sobolev spaces of order \(s\) bigger than \(1/4\); the assertion is sharp on the sphere. The main tool for proving this are bilinear estimates for Laplace spectral projectors on compact surfaces.

35Q55 NLS equations (nonlinear Schrödinger equations)
58J32 Boundary value problems on manifolds
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
35P15 Estimates of eigenvalues in context of PDEs
35Q40 PDEs in connection with quantum mechanics
Full Text: DOI arXiv
[1] Banica, V.: On the nonlinear Schrödinger dynamics on S2. J. Math. Pures Appl. 83, 77-98 (2004) · Zbl 1084.35082
[2] Besse, A.: Manifolds all of whose geodesics are closed. Berlin, Heidelberg, New York: Springer 1978 · Zbl 0387.53010
[3] Birnir, B., Kenig, C.E., Ponce, G., Svanstedt, N., Vega, L.: On the ill posedness of the IVP for the generalized KdV and NLS equations. J. Lond. Math. Soc. 53, 551-559 (1996) · Zbl 0855.35112
[4] Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution equations i. Schrödinger equations. Geom. Funct. Anal. 3, 107-156 (1993) · Zbl 0787.35097
[5] Bourgain, J.: Exponential sums and nonlinear Schrödinger equations. Geom. Funct. Anal. 3, 157-178 (1993) · Zbl 0787.35096
[6] Brézis, H., Gallouet, T.: Nonlinear Schrödinger evolution equations. Nonlinear Anal., Theory Methods Appl. 4, 677-681 (1980) · Zbl 0451.35023
[7] Burq, N., Gérard, P., Tzvetkov, N.: An instability property of the nonlinear Schrödinger equation on Sd. Math. Res. Lett. 9, 323-335 (2002) · Zbl 1003.35113
[8] Burq, N., Gérard, P., Tzvetkov, N.: Inégalités de Sogge bilinéaires et équation de Schrödinger non linéaire. Séminaire E.D.P. de l?École Polytechnique, 2002-03
[9] Burq, N., Gérard, P., Tzvetkov, N.: The Cauchy problem for the nonlinear Schrödinger equation on a compact manifold. Proceedings of the Öresund Symposium on Partial Differential Equations, Lund, May 2002. J. Nonlinear Math. Phys. 10, 1-16 (2003) · Zbl 1362.35282
[10] Burq, N., Gérard, P., Tzvetkov, N.: Strichartz inequalities and the non linear Schrödinger equation on compact manifolds. Am. J. Math. 126, 569-605 (2004) · Zbl 1067.58027
[11] Burq, N., Gérard, P., Tzvetkov, N.: Le problème de Cauchy pour l?équation de Schrödinger non linéaire en milieu inhomogène. Book in preparation
[12] Carleson, L., Sjölin, P.: Oscillatory integrals and a multiplier problem for the disc. Stud. Math. 44, 287-299 (1972) · Zbl 0215.18303
[13] Cazenave, T., Weissler, F.: The Cauchy problem for the critical nonlinear Schrödinger equation in Hs. Nonlinear Anal., Theory Methods Appl. 14, 807-836 (1990) · Zbl 0706.35127
[14] Christ, M., Colliander, J., Tao, T.: Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations. Am. J. Math. 125, 1235-1293 (2003) · Zbl 1048.35101
[15] Christ, M., Colliander, J., Tao, T.: Personal communication, 2003
[16] Colin de Verdière, Y.: Le spectre des opérateurs elliptiques à bicaractéristiques toutes periodiques. Comment. Math. Helv. 54, 508-522 (1979) · Zbl 0459.58014
[17] Foschi, D., Klainerman, S.: Bilinear space-time estimates for homogeneous wave equations. Ann. Sci. Éc. Norm. Supér. 33, 211-274 (2000) · Zbl 0959.35107
[18] Gallagher, I., Gérard, P.: Profile decomposition for the wave equation outside a convex obstacle. J. Math. Pures Appl., IX. Sér. 80, 1-49 (2001) · Zbl 0980.35088
[19] Gallot, S., Hulin, D., Lafontaine, J.: Riemannian geometry. Universitext, second edition. Berlin, Heidelberg: Springer 1990 · Zbl 0716.53001
[20] Ginibre, J.: Le problème de Cauchy pour des edp semi-linéaires périodiques en variables d?espace (d?après Bourgain). Séminaire Bourbaki 1995, Astérisque 237, 163-187 (1996)
[21] Guillemin, V.: Lectures on spectral theory of elliptic operators. Duke Math. J. 44, 129-137 (1977) · Zbl 0351.22005
[22] Hörmander, L.: Oscillatory integrals and multipliers on FLp. Ark. Mat. 11, 1-11 (1973) · Zbl 0254.42010
[23] Hörmander, L.: Fourier integral operators. I. Acta Math. 127, 79-183 (1971) · Zbl 0212.46601
[24] Hörmander, L.: Analysis of Linear Partial Differential Operators IV. Grundlehren der mathematischen Wissenschaften, 275. Berlin, Heidelberg, New York: Springer 1985
[25] Ivrii, V.: Microlocal Analysis and Precise Spectral Asymptotics. Springer Monographs in Mathematics. Berlin, Heidelberg, New York: Springer 1998 · Zbl 0906.35003
[26] Kenig, C.E., Ponce, G., Vega, L.: On the ill-posedness of some canonical dispersive equations. Duke Math. J. 106, 617-633 (2001) · Zbl 1034.35145
[27] Klainerman, S., Machedon, M.: Remark on Strichartz-type inequalities. With appendices by J. Bourgain and D. Tataru. Int. Math. Res. Not. 5, 201-220 (1996) · Zbl 0853.35062
[28] Klainerman, S., Machedon, M.: Finite energy solutions of the Yang-Mills equations in R3+1. Ann. Math. (2) 142, 39-119 (1995) · Zbl 0827.53056
[29] Koch, H., Tzvetkov, N.: Nonlinear wave interactions and the Benjamin-Ono equation. Preprint, April 2003, submitted · Zbl 1156.35460
[30] Lebeau, G.: Non linear optic and supercritical wave equation. Bull. Soc. R. Sci. Liège 70, 267-306 (2002), Hommage à Pascal Laubin · Zbl 1034.35137
[31] Ogawa, T., Ozawa, T.: Trüdinger type inequalities and uniqueness of weak solutions for the nonlinear schrödinger equation. J. Math. Anal. Appl. 155, 531-540 (1991) · Zbl 0733.35095
[32] Sogge, C.: Oscillatory integrals and spherical harmonics. Duke Math. J. 53, 43-65 (1986) · Zbl 0636.42018
[33] Sogge, C.: Concerning the lp norm of spectral clusters for second order elliptic operators on compact manifolds. J. Funct. Anal. 77, 123-138 (1988) · Zbl 0641.46011
[34] Sogge, C.: Fourier integrals in classical analysis. Cambridge Tracts in Mathematics 1993 · Zbl 0783.35001
[35] Staffilani, G., Tataru, D.: Strichartz estimates for a Schrödinger operator with nonsmooth coefficients. Commun. Partial Differ. Equations 27, 1337-1372 (2002) · Zbl 1010.35015
[36] Stanton, R.J., Weinstein, A.: On the L4 norm of spherical harmonics. Math. Proc. Camb. Philos. Soc. 89, 343-358 (1981) · Zbl 0479.33010
[37] Tao, T.: Multilinear weighted convolutions of L2 functions, and applications to non-linear dispersive equations. Am. J. Math. 123, 839-908 (2001) · Zbl 0998.42005
[38] Vladimirov, M.V.: On the solvability of mixed problem for a nonlinear equation of Schrödinger type. Sov. Math. Dokl. 29, 281-284 (1984) · Zbl 0585.35019
[39] Weinstein, A.: Nonlinear stabilization of quasimodes. Proc. A.M.S. Symp. on Geometry of the Laplacian, Hawaii, 1979, A.M.S. Colloq. Publ. 36, 301-318 (1980)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.