Wang, Mingliang; Li, Xiangzheng Applications of F-expansion to periodic wave solutions for a new Hamiltonian amplitude equation. (English) Zbl 1092.37054 Chaos Solitons Fractals 24, No. 5, 1257-1268 (2005). Summary: We present an extended F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics, which can be thought of as a concentration of extended Jacobi elliptic function expansion method proposed more recently. By using the F-expansion, without calculating Jacobi elliptic functions, we obtain simultaneously many periodic wave solutions expressed by various Jacobi elliptic functions for the new Hamiltonian amplitude equation. When the modulus \(m\) approaches to 1 and 0, then the hyperbolic function solutions (including the solitary wave solutions) and trigonometric function solutions are also given, respectively. As the parameter \(e\) goes to zero, the new Hamiltonian amplitude equation becomes the well-known nonlinear Schrödinger equation (NLS), and at least, 37 kinds of solutions of NLS can be derived from the solutions of the new Hamiltonian amplitude equation. Cited in 1 ReviewCited in 92 Documents MSC: 37N05 Dynamical systems in classical and celestial mechanics 35Q53 KdV equations (Korteweg-de Vries equations) 35B10 Periodic solutions to PDEs 35Q51 Soliton equations Keywords:nonlinear evolution equations; Jacobi elliptic functions; hyperbolic function solutions; solitary wave solutions; trigonometric function solutions; nonlinear Schrödinger equation PDF BibTeX XML Cite \textit{M. Wang} and \textit{X. Li}, Chaos Solitons Fractals 24, No. 5, 1257--1268 (2005; Zbl 1092.37054) Full Text: DOI References: [1] Wadati, M.; Segur, H.; Ablowitz, M. J., J. Phys. Soc. Jpn., 61, 1187 (1992) [2] Yajima, T.; Wadati, M., J. Phys. Soc Jpn., 56, 3464 (1987) [3] Yajima, T.; Wadati, M., J. Phys. Soc. Jpn., 59, 41 (1990) [4] Peng, Y. Z., J. Phys. Soc. Jpn., 72, 1356 (2003) [5] Fu, Z. T.; Liu, S. K.; Liu, S. D., Phys. Lett. A, 299, 507 (2002) [6] Fu, Z. T.; Liu, S. K.; Liu, S. D., Phys. Lett. A, 290, 72 (2001) [7] Liu, S. K.; Fu, Z. T.; Liu, S. D., Phys. Lett. A, 289, 69 (2001) [8] Parkes, E. J.; Duffy, B. R.; Abbott, P. C., Phys. Lett. A, 295, 280 (2002) [9] Yan, Z. Y., Commun. Theor. Phys., 38, 143 (2002) [10] Yan, Z. Y., Commun. Theor. Phys., 38, 400 (2002) [11] Yan, Z. Y., Commun. Theor. Phys., 39, 144 (2002) [12] Yan, Z. Y., Comput. Phys. Commun., 148, 30 (2002) [13] Yan, Z. Y., Chaos, Solitons & Fractals., 15, 575 (2003) [14] Yan, Z. Y., Chaos, Solitons & Fractals, 18, 299 (2003) [15] Yan, Z. Y., Comput. Phys. Commun., 153, 145 (2003) [16] Zhou, Y. B.; Wang, M. L.; Wang, Y. M., Phys. Lett. A, 308, 31 (2003) [17] Wang, M. L.; Zhou, Y. B., Phys. Lett. A, 318, 84 (2003) [18] Wang, M. L.; Wang, Y. M.; Zhang, J. L., Chinese Phys., 12, 12, 1341 (2003) [19] Zhang, J. L.; Wang, M. L.; Cheng, D. M., et al, Commun. Theor. Phys., 40, 129 (2003) [20] Zhang, J. L.; Ren, D. F.; Wang, M. L., Chinese Phys., 12, 8, 825 (2003) [21] Zhang, J. L.; Wang, M. L.; Fang, Z. D., J. Atom. Molec. Phys., 21, 1, 78 (2004) [22] Zhou, Y. B.; Wang, M. L.; Miao, T. D., Phys. Lett. A, 323, 77 (2004) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.