×

Chaos synchronization of a chaotic system via nonlinear control. (English) Zbl 1092.37514

Summary: The problem of chaos synchronization of a chaotic system which is proposed by J. Lü, G. Chen and D. Cheng [Int. J. Bifurcation Chaos Appl. sci. Eng. 14, 1507–1537 (2004; Zbl 1129.37323)] is considered. A novel nonlinear controller is designed based on the Lyapunov stability theory. The proposed controller ensures that the states of the controlled chaotic slave system asymptotically synchronizes the states of the master system. A numerical example is given to illuminate the design procedure and advantage of the result derived.

MSC:

37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
93D15 Stabilization of systems by feedback
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory

Citations:

Zbl 1129.37323
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Chen, G.; Dong, X., From chaos to order (1998), World Scientific: World Scientific Singapore · Zbl 0908.93005
[2] Mosekilde, E.; Mastrenko, Y.; Postnov, D., Chaotic synchronization. Applications for living systems (2002), World Scienctific: World Scienctific Singapore · Zbl 0999.37022
[3] Pikovsky, A.; Rosenblum, M.; Kurths, J., Synchronization, a universal concept in nonlinear science (2001), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0993.37002
[4] Ott, E.; Grebogi, C.; Yorke, J. A., Controlling chaos, Phys Rev Lett, 64, 1196-1199 (1990) · Zbl 0964.37501
[5] Pyragas, K., Continuous control of chaos by self-controlling feedback, Phys Lett A, 170, 421-428 (1992)
[6] Park, J. H.; Kwon, O. M., LMI optimization approach to stabilization of time-delay chaotic systems, Chaos, Solitons & Fractals, 23, 445-450 (2005) · Zbl 1061.93509
[7] Park, J. H., Controlling chaotic systems via nonlinear feedback control, Chaos, Solitons & Fractals, 23, 1049-1054 (2005) · Zbl 1061.93508
[8] Hwang, C. C.; Hsieh, J. Y.; Lin, R. S., A linear continuous feedback control of Chua’s circuit, Chaos, Solitons & Fractals, 8, 1507-1515 (1997)
[9] Lu, J. H.; Lu, J. A., Controlling uncertain Lü system using linear feedback, Chaos, Solitons & Fractals, 17, 127-133 (2003) · Zbl 1039.37019
[10] Pecora, L. M.; Carroll, T. L., Synchronization in chaotic systems, Phys Rev Lett, 64, 821-824 (1990) · Zbl 0938.37019
[11] Carroll, T. L.; Pecora, L. M., Synchronizing chaotic circuits, IEEE Trans Circ Syst I, 38, 453-456 (1991)
[12] Chua, L. O.; Itah, M.; Kosarev, L.; Eckert, K., Chaos synchronization in Chua’s circuits, J Circuits Syst Comput, 3, 93-108 (1993)
[13] Chen, M.; Han, Z., Controlling and synchronizing chaotic Genesio system via nonlinear feedback control, Chaos, Solitons & Fractals, 17, 709-716 (2003) · Zbl 1044.93026
[14] Lü, J.; Chen, G.; Cheng, D.; Celikovsky, S., Bridge the gap between the Lorenz system and the Chen system, Int J Bifurcat Chaos, 12, 2917-2926 (2002) · Zbl 1043.37026
[15] Lu, J.; Wu, X.; Lü, J., Synchronization of a unified chaotic system and the application in secure communication, Phys Lett A, 305, 365-370 (2002) · Zbl 1005.37012
[16] Wu, X.; Lu, J., Parameter identification and backstepping control of uncertain Lü system, Chaos, Solitons & Fractals, 18, 721-729 (2003) · Zbl 1068.93019
[17] Li, D.; Lu, J. A.; Wu, X., Linearly coupled synchronization of the unified chaotic systems and the Lorenz systems, Chaos, Solitons & Fractals, 23, 79-85 (2005) · Zbl 1063.37030
[18] Lü, J.; Zhou, T.; Zhang, S., Chaos synchronization between linearly coupled chaotic systems, Chaos, Solitons & Fractals, 14, 529-541 (2002) · Zbl 1067.37043
[19] Park, J. H., Stability criterion for synchronization of linearly coupled unified chaotic systems, Chaos, Solitons & Fractals, 23, 1319-1325 (2005) · Zbl 1080.37035
[20] Chen, H. K., Global chaos synchronization of new chaotic systems via nonlinear control, Chaos, Solitons & Fractals, 23, 1245-1251 (2005) · Zbl 1102.37302
[21] Lü, J.; Chen, G.; Cheng, D., A new chaotic system and beyond: the generalized Lorenz-like system, Int J Bifurcat Chaos, 14, 1507-1537 (2004) · Zbl 1129.37323
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.